1-10hit |
Tomoya KAGEYAMA Jun MASHINO Doohwan LEE
Orbital angular momentum (OAM) multiplexing technology is being investigated for high-capacity point-to-point (PtP) wireless transmission toward beyond 5G systems. OAM multiplexing is a spatial multiplexing technique that utilizes the twisting of electromagnetic waves. Its advantage is that it reduces the computational complexity of the signal processing on spatial multiplexing. Meanwhile point-to-multi point (PtMP) wireless transmission, such as integrated access and backhaul (IAB) will be expected to simultaneously accommodates a high-capacity prioritized backhaul-link and access-links. In this paper, we study the extension of OAM multiplexing transmission from PtP to PtMP to meet the above requirements. We propose a backhaul prioritized resource control algorithm that maximizes the received signal-to-interference and noise ratio (SINR) of the access-links while maintaining the backhaul-link. The proposed algorithm features adaptive mode selection that takes into account the difference in the received power of each OAM mode depending on the user equipment position and the guaranteed power allocation of the backhaul capacity. We then evaluate the performance of the proposed method through computer simulation. The results show that throughput of the access-links improved compared with the conventional multi-beam multi-user multi-input multi-output (MIMO) techniques while maintaining the throughput of the backhaul-link above the required value with minimal feedback information.
Seiji KOZAKI Akiko NAGASAWA Takeshi SUEHIRO Kenichi NAKURA Hiroshi MINENO
In this paper, a novel method of resource abstraction and an abstracted-resource model for dynamic resource control in optical access networks are proposed. Based on this proposal, an implementation assuming application to 5G mobile fronthaul and backhaul is presented. Finally, an evaluation of the processing time for resource allocation using this method is performed using a software prototype of the control function. From the results of the evaluation, it is confirmed that the proposed method offers better characteristics than former approaches, and is suitable for dynamic resource control in 5G applications.
Nobuhiko ITOH Motoki MORITA Takanori IWAI Kozo SATODA Ryogo KUBO
Traffic collision is an extremely serious issue in the world today. The World Health Organization (WHO) reported the number of road traffic deaths globally has plateaued at 1.25 million a year. In an attempt to decrease the occurrence of such traffic collisions, various driving systems for detecting pedestrians and vehicles have been proposed, but they are inadequate as they cannot detect vehicles and pedestrians in blind places such as sharp bends and blind intersections. Therefore, mobile networks such as long term evolution (LTE), LTE-Advanced, and 5G networks are attracting a great deal of attention as platforms for connected car services. Such platforms enable individual devices such as vehicles, drones, and sensors to exchange real-time information (e.g., location information) with each other. To guarantee effective connected car services, it is important to deliver a data block within a certain maximum tolerable delay (called a deadline in this work). The Third Generation Partnership Project (3GPP) stipulates that this deadline be 100 ms and that the arrival ratio within the deadline be 0.95. We investigated an intersection at which vehicle collisions often occur to evaluate a realistic environment and found that schedulers such as proportional fairness (PF) and payload-size and deadline-aware (PayDA) cannot satisfy the deadline and arrival ratio within the deadline, especially as network loads increase. They fail because they do not consider three key elements — radio quality, chunk size, and the deadline — when radio resources are allocated. In this paper, we propose a deadline-aware scheduling scheme that considers chunk size and the deadline in addition to radio quality and uses them to prioritize users in order to meet the deadline. The results of a simulation on ns-3 showed that the proposed method can achieve approximately four times the number of vehicles satisfying network requirements compared to PayDA.
Katsuya NAKAHIRA Jun MASHINO Jun-ichi ABE Daisuke MURAYAMA Tadao NAKAGAWA Takatoshi SUGIYAMA
This paper proposes a dynamic spectrum controlled (DSTC) channel allocation algorithm to increase the total throughput of satellite communication (SATCOM) systems. To effectively use satellite resources such as the satellite's maximum transponder bandwidth and maximum transmission power and to handle the propagation gain variation at all earth stations, the DSTC algorithm uses two new transmission techniques: spectrum compression and spectrum division. The algorithm controls various transmission parameters, such as the spectrum compression ratio, number of spectrum divisions, combination of modulation method and FEC coding rate (MODCOD), transmission power, and spectrum bandwidth to ensure a constant transmission bit rate under variable propagation conditions. Simulation results show that the DSTC algorithm achieves up to 1.6 times higher throughput than a simple MODCOD-based algorithm.
Kazunori AKABANE Hiroyuki SHIBA Munehiro MATSUI Kazuhiro UEHARA
Various wireless systems are being developed to meet users' needs, and the rapid increase in frequency demand that accompanies the increasing popularity of wireless services means that more effective use of frequency resources is urgently needed. However, existing base stations are making no effort to use frequency resources effectively, and cooperation among wireless system base stations is needed to use frequency resources more effectively. Base stations can cooperate more efficiently if they are able to use multiple channels of many wireless systems simultaneously. We propose an autonomous adaptive base station (AABS) that can switch among various wireless systems the way software defined radio (SDR) base stations do. AABS can autonomously select and use the most suitable wireless system on the basis of user traffic and its hardware resources. Moreover, frequency resources are used effectively because AABS prevents unnecessary radio wave transmission when the number of users in the wireless systems decreases. AABS is also suitable for "multi-link communication" because it can use multiple channels of multiple wireless systems simultaneously. We developed AABS prototype and evaluated its performance. Our experimental and computer simulation results show the performance of AABS and its efficiency.
Yoshitaka HARA Kazuyoshi OSHIMA
This paper studies a multiband mobile communication system to support both high data rate services and wide service coverage, using high and low frequency resources with different propagation characteristics. In the multiband system, multiple frequency bands are managed by a base station and one of the frequency bands is adaptively allocated to a terminal depending on his channel quality. By limiting the low frequency resources to a terminal not covered by the higher frequencies, the presented multiband system can accommodate many terminals providing wide coverage area, as if all radio resources have low frequency. From numerical results, the multiband system can provide wide service coverage area for much larger number of terminals than conventional systems. It is also found that an appropriate balance of multiple frequency resources is essential to achieve high capacity.
Mallik TATIPAMULA Zafar ALI Ichiro INOUE Takashi MIYAMURA Shigeo URUSHIDANI Shoichiro ASANO
The bandwidth explosion ushered in by the popularity of the Internet has spurred the recent acceleration in the development and deployment of equipment supporting packet based broadband services. This coupled with the widespread deployment of WDM based Optical Transport Systems in the core network to satisfy the corresponding increase in capacity demand, has led network planners for tighter coordination between IP and Optical layers to increase reliability, robustness of next generation backbone network. In this paper, we propose a solution known as border model, which is tailored to address deployment concerns associated with GMPLS technology in existing networks. We extend our proposal to include, "Border model based Multi-layer service network architecture," to provide coordinated multi-layer IP and Optical services, for different network design scenarios. Resource Control is an important aspect of multi-layer service networks. This paper examines next generation requirements for resource control, defines resource control architecture and presents some evaluation results for multi-layer recovery techniques in the context of Multi-layer service network based on border model.
Shaokai YU Won-Sik YOON Yong-Deak KIM Chae-Woo LEE Jae-Hyun KIM
Radio resource is the bottleneck for current multimedia wireless networks. Intelligent traffic control strategies can be enforced to optimize resource allocation so as to enhance network performance. In this study, dynamic control scheme for non-real-time traffic and autonomic control schemes for multimedia traffic are proposed to guarantee the required quality of service (QoS) in the inference-dominated high-speed wireless environment. Both handoff priority and terminal mobility are also taken into consideration. The performance of the state-dependent multidimensional birth-death process is derived by the efficient matrix-analytic methods (MAMs). Compared with the previous results, this paper shows that the proposed control methods can be used for both real-time and non-real-time multimedia traffic in order to meet the required performance without degrading the quality of multimedia services. These results are also important for the design of evolving multimedia wireless systems as well as network optimization.
Xiang DUAN Zhisheng NIU Junli ZHENG
In wireless communication systems where users compete for limited bandwidth, radio resource control is essential for throughput enhancement and delay reduction. In this paper, we present a game-theoretical approach to distributed resource control in CDMA systems. Incomplete information about channel conditions is considered. The resource control problem is formulated as a noncooperative game of incomplete information, with which the existence and uniqueness of the Bayesian Nash equilibrium (BNE) of the game is investigated. Since the equilibrium is Pareto inefficient, we propose a pricing policy to the resource control game by adding a penalty price to user's transmission cost. With the adoption of the price, user's aggressive behavior is depressed, and Pareto improvement is achieved. Also the Pareto efficient BNE of the game with pricing is studied. Simulation results show that users can obtain higher throughput and lower average packet transmission delay by proper pricing policy. It is also verified that the scheme of pricing policy is robust when information of channel conditions is inaccurate.
Kim-Joan CHEN Cheng-Shong WU Jin-Chyang JIAU
With the introduction of ATM technology, service providers around the world have actively engaged in offering high bandwidth services. Currently, services, such as T1/E1, T3/E3 circuit emulation, are made available to large-volume account users. However, more advanced services, such as multimedia applications, have demanded not just high bandwidth but also flexible rate adaptation with quality-of-service (QoS) guarantee. To support the above service requirements, sophisticated network planning and engineering procedures should be taken. In the past few years, we have conducted various researches on developing the engineering strategies for resource control and management to support multi-rate service offering. We have also looked into the design details of connection control and management for achieving the QoS requirement. We considered the service quality of the underlying transport in regard with the QoS management. In this paper, we will outline those results and give an overview description about the proposed framework.