1-15hit |
Fengde JIA Jihong TAN Xiaochen LU Junhui QIAN
Short-range ambiguous clutter can seriously affect the performance of airborne radar target detection when detecting long-range targets. In this letter, a multiple-input-multiple-output (MIMO) array structure elevation filter (EF) is designed to suppress short-range clutter (SRC). The sidelobe level value in the short-range clutter region is taken as the objective function to construct the optimization problem and the optimal EF weight vector can be obtained by using the convex optimization tool. The simulation results show that the MIMO system can achieve better range ambiguous clutter suppression than the traditional phased array (PA) system.
Kentaro MURATA Naoki HONMA Kentaro NISHIMORI Naobumi MICHISHITA Hisashi MORISHITA
This paper presents a novel simultaneous decoupling and matching technique for transmitting (Tx) and receiving (Rx) ports in short-range multiple-input multiple-output (SR-MIMO) systems. The principal difference with conventional decoupling and matching network (DMN) approaches is that the proposed technique considers strong mutual coupling between closely-positioned Tx/Rx arrays, and the S-parameter variation due to the presence of each other's array. This technique has two stages; first, 180-degree hybrid couplers are connected to both Tx/Rx ports of a plane-symmetrical MIMO system. This decouples both Tx/Rx ports, and moreover, channels between them are orthogonalized. That is, the MIMO system is transformed into multi orthogonalized single-input single-output (SISO) systems. Second, Tx/Rx ports of each orthogonalized SISO system are simultaneously matched based on conjugate matching theory. Consequently, the transmission power of the short-range MIMO system is maximized. Numerical results show that the proposed technique realizes higher channel capacity than the conventional DMN; indeed it achieves the theoretically possible capacity. In addition to theoretical analyses, we provide an example for microstrip line (MSL) circuit implementation. This MSL model offers good simultaneous decoupling and matching performance yielding channel capacity comparable to that of an ideally-designed circuit model. This validates the implementation feasibility of the proposed technique.
Kentaro MURATA Naoki HONMA Kentaro NISHIMORI David M. KLYMYSHYN Hisashi MORISHITA
An analog-beamforming-based eigenmode transmission technique is proposed that employs a network of interconnected 180-degree hybrid couplers at both transmitting and receiving sides of a plane-symmetrically configured short-range MIMO system. This technique can orthogonalize MIMO channels regardless of array parameters such as antenna spacing and Tx-Rx distance, provided the MIMO array is symmetric. For verifying the effectiveness of the proposed technique in channel orthogonalization, an experiment is conducted using a 4×4 MIMO array consisting of microstrip antennas and cascade-connected rat-race hybrid couplers. The results indicate a reduction in interference by approximately -28.3dB on average compared to desired signal power, and the ability to realize four-stream parallel MIMO transmission by using only analog passive networks. The proposed technique can achieve channel capacity almost equivalent to that of eigenbeam space division multiplexing with ideal digital beamforming.
Rui WU Wei DENG Shinji SATO Takuichi HIRANO Ning LI Takeshi INOUE Hitoshi SAKANE Kenichi OKADA Akira MATSUZAWA
A 60-GHz CMOS transmitter with on-chip antenna for high-speed short-range wireless interconnections is presented. The radiation gain of the on-chip antenna is doubled using helium-3 ion irradiation technique. The transmitter core is composed of a resistive-feedback RF amplifier, a double-balanced passive mixer, and an injection-locked oscillator. The wideband and power-saving design of the transmitter core guarantees the low-power and high-data-rate characteristic. The transmitter fabricated in a 65-nm CMOS process achieves 5-Gb/s data rate with an EVM performance of $-$12 dB for BPSK modulation at a distance of 1,mm. The whole transmitter consumes 17,mW from a 1.2-V supply and occupies a core area of 0.64,mm$^{2}$ including the on-chip antenna. The gain-enhanced antenna together with the wideband and power-saving design of the transmitter provides a low-power low-cost full on-chip solution for the short-range high-data-rate wireless communication.
Ryochi KATAOKA Kentaro NISHIMORI Takefumi HIRAGURI Naoki HONMA Tomohiro SEKI Ken HIRAGA Hideo MAKINO
A novel analog decoding method using only 90-degree phase shifters is proposed to simplify the decoding method for short-range multiple-input multiple-output (MIMO) transmission. In a short-range MIMO transmission, an optimal element spacing that maximizes the channel capacity exists for a given transmit distance between the transmitter and receiver. We focus on the fact that the weight matrix by zero forcing (ZF) at the optimal element spacing can be obtained by using dividers and 90-degree phase shifters because it can be expressed by a unitary matrix. The channel capacity by the proposed method is next derived for the evaluation of the exact limitation of the channel capacity. Moreover, it is shown that an optimal weight when using directional antennas can be expressed by using only dividers, 90-degree phase shifters, and attenuators, regardless of the beam width of the directional antenna. Finally, bit error rate and channel capacity evaluations by both simulation and measurement confirm the effectiveness of the proposed method.
Ken HIRAGA Kazumitsu SAKAMOTO Kentaro NISHIMORI Tomohiro SEKI Tadao NAKAGAWA Kazuhiro UEHARA
One of the procedures for increasing the number of multi-input and multi-output (MIMO) branches without increasing the computational cost for MIMO detection or multiplexing is to exploit parallel transmissions by using polarization multiplexing. In this paper the effectiveness of using polarization multiplexing is confirmed under the existence of polarization rotation, which is inevitably present in short-range multi-input and multi-output (SR-MIMO) channels with planar array antennas. It is confirmed that 8×8 SR-MIMO transmission system with polarization multiplexing has 60bit/s/Hz of channel capacity. This paper also shows a model for theoretical cross polarization discrimination (XPD) degradation, which is useful to calculate XPD degradations on diagonal paths.
Kazumitsu SAKAMOTO Ken HIRAGA Tomohiro SEKI Tadao NAKAGAWA Kazuhiro UEHARA
A Simple decoding method for short-range MIMO (SR-MIMO) transmission can reduce the power consumption for MIMO decoding, but the distance between the transceivers requires millimeter-order accuracy in order to satisfy the required transmission quality. In this paper, we propose a phase difference control method between each propagation channel to alleviate the requirements for the transmission distance accuracy. In the proposed method, the phase difference between each propagation channel is controlled by changing the transmission (or received) power ratio of each element of sub-array antennas. In millimeter-wave broadband transmission simulation, we clarified that when sub-array antenna spacing is set to 6.6 mm and element spacing of sub-array antenna is set to 2.48mm, the proposed method can extend the transmission distance range satisfying the required transmission quality, which is that bit error rate (BER) before error correction is less than 10-2 from 9∼29mm to 0∼50mm in QPSK, from 15∼19mm to 0∼30mm in 16QAM, and from only 15mm to 4∼22mm in 64QAM.
This letter is concerned with cellular controlled short-range communication (CCSRC) systems, which can provide a significant performance gain over the traditional cellular systems as shown in the literature. However, to obtain such a gain, CCSRC systems need perfect channel state information (CSI) of all users and the complexity of setting up the optimal cooperative clusters is factorial with respect to the number of potentially cooperative users, which is very unrealistic in practical systems. To solve this problem, we propose a novel cooperative strategy, where CCSRC systems only need the distances between all user pairs and the complexity of setting up the cooperative clusters is relatively low. Simulation results show that the performance of the proposed strategy is close to optimal.
Hui DENG Xiaoming TAO Ning GE Jianhua LU
This letter studies cellular controlled short-range communication in OFDMA networks. The network needs to decide when to allow direct communication between a closely located device-to-device (D2D) pair instead of conveying data from one device to the other via the base station and when not to, in addition to subchannel and power allocation. Our goal is to maximize the total network throughput while guaranteeing the rate requirements of all users. For that purpose, we formulate an optimization problem subject to subchannel and power constraints. A scheme which combines a joint mode selection and subchannel allocation algorithm based on equal power allocation with a power reallocation scheme is proposed. Simulation results show that our proposed scheme can improve the network throughput and outage probability compared with other schemes.
Ken HIRAGA Tomohiro SEKI Kentaro NISHIMORI Kazuhiro UEHARA
Short-range Multiple-Input-Multiple-Output (SR-MIMO) transmission is an effective technique for achieving high-speed and short-range wireless communication. With this technique, however, the optimum aperture size of array antennas grows when the transmission distance is increased. Thus, antenna miniaturization is an important issue in SR-MIMO. In this paper, we clarify the effectiveness of using dual-polarized planar antennas as a means of miniaturizing SR-MIMO array antennas by measurements and analysis of MIMO transmission characteristics. We found that even in SR-MIMO transmission, the use of dual-polarized transmission enables higher channel capacity. Dual-polarized antennas can reduce by two thirds the array area that is needed to obtain the same channel capacity. For a transmission distance of two wavelengths, the use of a dual-polarized antenna improved the channel capacity by 26 bit/s/Hz while maintaining the same number of transmitters and receivers and the same antenna aperture size. Moreover, dual-polarized SR-MIMO has a further benefit when zero-forcing (ZF) reception without transmit beamforming is adopted, i.e., it effectively simplifies hardware configuration because it can reduce spatial correlation even in narrow element spacing. In this work, we confirmed that the application of dual-polarization to SR-MIMO is an effective way to both increase channel capacity and enhance transceiver simplification.
Ken HIRAGA Tomohiro SEKI Kentaro NISHIMORI Kenjiro NISHIKAWA Ichihiko TOYODA Kazuhiro UEHARA
Short-range multiple-input and multiple-output (SR-MIMO) has attracted much attention, because the technique makes it possible to raise channel capacity to several hundred Gbit/s by utilizing the millimeter-wave band (e.g., 60 GHz band). Although the opposed transceiving antennas are assumed to be accurately positioned in previous studies regarding SR-MIMO, a very important issue is to evaluate the performance degradation due to displacement between MIMO transceivers. In SR-MIMO over the millimeter-wave band, any displacement is perceived as significant because the wavelength is small. This paper evaluates the influence on SR-MIMO transmission performance over millimeter-wave caused by displacement between the transmitting and receiving antennas. The channel capacity is found to degrade by 5% when the horizontal displacement is 1 mm and by 2.7% when the rotational displacement is 10 degrees. In addition, comparing performances obtained with a number of antenna array arrangements clarifies that a square pattern arrangement is suitable for short-range wireless transmission.
Hiroshi HIRAYAMA Gen MATSUI Nobuyoshi KIKUMA Kunio SAKAKIBARA
A new structure to improve channel capacity of short-range MIMO is proposed. The proposed structure consists of back reflector and side reflector. FDTD simulation demonstrates a role of back reflector and side reflector. The back reflector increases all eigen values. The side reflector equalizes eigen value distribution. Consequently, the proposed structure enhances the channel capacity.
Shinya MATSUFUJI Takahiro MATSUMOTO Tomohiro HAYASHIDA Takafumi HAYASHI Noriyoshi KUROYANAGI Pingzhi FAN
This paper presents a ZCZ code which are combinedly used for spreading sequences and a synchronization symbol in quasi-synchronous CDMA systems using PSK, ASK or BFSK. Furthermore a simple matched filter is presented, which simultaneously calculates correlations with any sequences in the ZCZ code.
Ai-ichiro SASAKI Akinori FURUYA Mitsuru SHINAGAWA
We propose a novel short-range wireless communications technology that uses quasi-static electric fields; it enables data communication between devices separated by up to 10 cm via dielectric media at a speed of 10 Mbps. It is considered to be a secure wireless technology since communication area is restricted to below about 10 cm. To suppress electromagnetic radiation, we adopted a baseband transmission scheme in which the quasi-static electric field is directly modulated by 10 BASE-T data signals. Since the spectra of the data signals are concentrated to below 20 MHz, the amplitude of the electric field rapidly decreases outside the communication area. This contributes to enhancing security of the communications system. In this paper, we explain a basic principle of the short-range wireless communications technology. Since baseband data signals are carried by the quasi-static electric field, the quality of the communication is easily degraded by the existence of the earth ground. To isolate the communications system from the earth ground, we introduce a novel electro-optic sensor to receive the quasi-static electric field. With the electro-optic sensor, stable data communication is possible at 10 Mbps via dielectric materials, such as a wooden table.
This paper gives an overview of the research and development trends in millimeter-wave short-range application systems, such as communication systems and sensing systems, in Japan and other countries. Frequency management trends are also described. Major research and development efforts in Japan have currently been concentrated on the 59-64 GHz band. The first major achievement resulting from those efforts was the allocation of the 60-61 GHz band to the automotive radar systems. Test productions of automotive radars in this band have already started. Further technological developments to reduce the cost and size of radar products are, however, required in order for such radar systems to be widely used. Development of broadband wireless LAN systems has also been intensively made in the 60 GHz band. In addition, technical issues related to standardization of millimeter-wave wireless LAN systems in the 60 GHz band have been examined at the Association of Radio Industries and Businesses. The application areas of millimeter-waves in the future are expected to become more diverse. Research and development trends of future application systems, such as broadband mobile communication systems and imaging radar systems, are also described. These systems require more advanced millimeter-wave technologies, such as smart antennas, low power-consumption devices, and more sensitive detectors. Efforts to develop these technologies must be strengthened.