IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E100-C No.11  (Publication Date:2017/11/01)

    Special Section on Electronic Displays
  • FOREWORD Open Access

    Tomokazu SHIGA  

     
    FOREWORD

      Page(s):
    942-942
  • Quantum Dot Light-Emitting Diode with Ligand-Exchanged ZnCuInS2 Quantum Dot Open Access

    Takeshi FUKUDA  Masatomo HISHINUMA  Junya MAKI  Hironao SASAKI  

     
    INVITED PAPER

      Page(s):
    943-948

    Nowadays, semiconductor quantum dots have attracted intense attention as emissive materials for light-emitting diodes, due to their high photoluminescence quantum yield and the controllability of their photoluminescence spectrum by changing the core diameter. In general, semiconductor quantum dots contain large amounts of organic ligands around the core/shell structure to obtain dispersibility in solution, which leads to solution processability of the semiconductor quantum dot. Furthermore, organic ligands, such as straight alkyl chains, are generally insulating materials, which affects the carrier transport in thin-film light-emitting diodes. However, a detailed investigation has not been performed yet. In this paper, we investigated the luminance characteristics of quantum-dot light-emitting diodes containing ZnCuInS2 quantum dots with different carbon chain lengths of alkyl thiol ligands as emitting layers. By evaluating the CH2/CH3 ratio from Fourier-transform infrared spectra and thermal analysis, it was found that approximately half of the oleylamine ligands were converted to alkyl thiol ligands, and the evaporation temperature increased with increasing carbon chain length of the alkyl thiol ligands based on thermogravimetric analysis. However, the photoluminescence quantum yield and the spectral shape were almost the same, even after the ligand-exchange process from the oleylamine ligand to the alkyl thiol ligand. The peak wavelength of the photoluminescence spectra and the photoluminescence quantum yield were approximately 610 nm and 10%, respectively, for all samples. In addition, the surface morphology of spin coated ZnCuInS2 quantum-dot layers did not change after the ligand-exchange process, and the root-mean-square roughness was around 1 nm. Finally, the luminance efficiency of an inverted device structure increased with decreasing carbon chain length of the alkyl thiol ligands, which were connected around the ZnCuInS2 quantum dots. The maximum luminance and current efficiency were 86 cd/m2 and 0.083 cd/A, respectively.

  • Novel Roll-to-Roll Deposition and Patterning of ITO on Ultra-Thin Glass for Flexible OLEDs Open Access

    Tadahiro FURUKAWA  Mitsuhiro KODEN  

     
    INVITED PAPER

      Page(s):
    949-954

    Novel roll-to-roll (R2R) deposition and patterning of ITO on ultra-thin glass were developed with no photolithography and applied to flexible organic light emitting diodes (OLEDs). The developed deposition consists of low temperature sputtering and annealing. The developed patterning utilizes an etching paste printed by novel R2R screen printing.

  • Colored Magnetic Janus Particles Open Access

    Hiroshi YABU  

     
    INVITED PAPER

      Page(s):
    955-957

    The aim of this research is realizing a high resolution and a fast color switching of electronic papers. In this report, we realized basis of electric papers comprised on magnetic Janus particles was established. Colored and magnetic Janus particles were successfully prepared, and magnetic Janus particles were introduced into honeycomb matrices. Introduced magnetic Janus particles quickly respond to an external magnetic field.

  • Comparison of Divergence Angle of Retro-Reflectors and Sharpness with Aerial Imaging by Retro-Reflection (AIRR) Open Access

    Norikazu KAWAGISHI  Kenta ONUKI  Hirotsugu YAMAMOTO  

     
    INVITED PAPER

      Page(s):
    958-964

    This paper reports on the relationships between the performance of retro-reflectors and the sharpness of an aerial image formed with aerial imaging by retro-reflection (AIRR). We have measured the retro-reflector divergence angle and evaluated aerial image sharpness by use of the contrast-transfer function. It is found that the divergence angle of the retro-reflected light is strongly related to the sharpness of the aerial image formed with AIRR.

  • Study on Compact Head-Mounted Display System Using Electro-Holography for Augmented Reality Open Access

    Eishin MURAKAMI  Yuki OGURO  Yuji SAKAMOTO  

     
    INVITED PAPER

      Page(s):
    965-971

    Head-mounted displays (HMDs) and augmented reality (AR) are actively being studied. However, ordinary AR HMDs for visual assistance have a problem in which users have difficulty simultaneously focusing their eyes on both the real target object and the displayed image because the image can only be displayed at a fixed distance from an user's eyes in contrast to where the real object three-dimensionally exists. Therefore, we considered incorporating a holographic technology, an ideal three-dimensional (3D) display technology, into an AR HMD system. A few studies on holographic HMDs have had technical problems, and they have faults in size and weight. This paper proposes a compact holographic AR HMD system with the purpose of enabling an ideal 3D AR HMD system which can correctly reconstruct the image at any depth. In this paper, a Fourier transform optical system (FTOS) was implemented using only one lens in order to achieve a compact and lightweight structure, and a compact holographic AR HMD system was constructed. The experimental results showed that the proposed system can reconstruct sharp images at the correct depth for a wide depth range. This study enabled an ideal 3D AR HMD system that enables simultaneous viewing of both the real target object and the reconstructed image without feeling visual fatigue.

  • Smart Steering Wheel with Swept Frequency Capacitive Sensing Open Access

    Yutaro ONO  Yuhei MORIMOTO  Reiji HATTORI  Masayuki WATANABE  Nanae MICHIDA  Kazuo NISHIKAWA  

     
    INVITED PAPER

      Page(s):
    972-977

    We present a smart steering wheel that detects the gripping position and area, as well as the distance to the approaching driver's hands by measuring the resonant frequency and its resistance value in an LCR circuit composed of the floating capacitance between the gripping hand and the electrode of the steering, and the body resistance. The resonant frequency measurement provides a high sensitivity that enables the estimation of the distance to the approaching hand, the gripping area of a gloved hand, and for covering the steering surface with any type of insulating material. This system can be applied for drowsiness detection, driving technique improvements, and for customization of the driving settings.

  • High-Speed 3-D Electroholographic Movie Playback Using a Digital Micromirror Device Open Access

    Naoki TAKADA  Masato FUJIWARA  ChunWei OOI  Yuki MAEDA  Hirotaka NAKAYAMA  Takashi KAKUE  Tomoyoshi SHIMOBABA  Tomoyoshi ITO  

     
    INVITED PAPER

      Page(s):
    978-983

    This study involves proposing a high-speed computer-generated hologram playback by using a digital micromirror device for high-definition spatiotemporal division multiplexing electroholography. Consequently, the results indicated that the study successfully reconstructed a high-definition 3-D movie of 3-D objects that was comprised of approximately 900,000 points at 60 fps when each frame was divided into twelve parts.

  • A Paper Book Type Input Device for Page Navigation in Digital Documents Open Access

    Shohei MASUNAGA  Xingya XU  Hiroki TERABE  Kazuo SHIBUTA  Hirohito SHIBATA  

     
    INVITED PAPER

      Page(s):
    984-991

    This paper aims to support quick and easy page access in digital documents. We tried to use a paper book as a device to navigate pages for digital documents. Our proposed system allows the users to perform the same interaction as a paper book such as inserting fingers among pages or folding an edge of the page as a dog-ear. Three experiments were conducted to confirm the effectiveness of the proposed system. As a result, we confirmed our proposed system was superior to conventional navigation methods especially in moving back and forth among pages.

  • Evaluation of Phase Retardation of Curved Thin Polycarbonate Substrates for Wide-viewing Angle Flexible Liquid Crystal Displays Open Access

    Shuichi HONDA  Takahiro ISHINABE  Yosei SHIBATA  Hideo FUJIKAKE  

     
    INVITED PAPER

      Page(s):
    992-997

    We investigated the effects of a bending stress on the change in phase retardation of curved polycarbonate substrates and optical characteristics of flexible liquid crystal displays (LCDs). We clarified that the change in phase retardation was extremely small even for the substrates with a small radius of curvature, because bending stresses occurred in the inner and upper surfaces are canceled each other out. We compensated for the phase retardation of polycarbonate substrates by a positive C-plate and successfully suppressed light leakage in both non-curved and curved states. These results indicate the feasibility of high-quality flexible LCDs using polycarbonate substrates even in curved states.

  • Transmission Property Analysis of Optically-Anisotropic Dielectric Multilayer for Thin Wide-Viewing-Angle Reflective Polarizer Open Access

    Kunihiko AKAHANE  Takahiro ISHINABE  Yosei SHIBATA  Hideo FUJIKAKE  

     
    INVITED PAPER

      Page(s):
    998-1004

    We show that light leakage that occurs in reflective polarizers at large angles of incidence can be suppressed by using anisotropic dielectric multilayers with larger reflective indices in thickness direction and that the interference-included 2×2 Jones matrix method is useful for the investigation of the optical propagation properties of the dielectric multilayers. The thickness of the reflective polarizer can also be reduced by optimizing the distribution of the multilayers in the stack, whilst considering the visual sensitivity. These results indicate that it is possible to realize a high-quality liquid crystal display with wide viewing angles and high light utilization efficiency.

  • Formation of Polymer Walls by Monomer Aggregation Control Utilizing Substrate-Surface Wettability for Flexible LCDs Open Access

    Seiya KAWAMORITA  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    INVITED PAPER

      Page(s):
    1005-1011

    We examined the novel aggregation control of the LC and monomer during formation of the polymer walls from a LC/monomer mixture in order to suppress the presence of the residual monomers and polymer networks in the pixel areas. The method is utilization of the differing wettabilities among LC and monomer molecules on a substrate surface. We patterned a substrate surface with a fluororesin and a polyimide film, and promoted phase separation of the LC and monomer by cooling process. This resulted in the LC and monomer aggregates primarily existing in the pixel areas and non-pixel areas, respectively. Moreover, the polymer-walls structure which was formed in this method partitioned into individual pixels in a lattice region and prevented the LC from flowing. This polymer-walls formation technique will be useful for developing high-quality flexible LCDs.

  • Generating Questions for Inquiry-Based Learning of History in Elementary Schools by Using Stereoscopic 3D Images Open Access

    Takashi SHIBATA  Kazunori SATO  Ryohei IKEJIRI  

     
    INVITED PAPER

      Page(s):
    1012-1020

    We conducted experimental classes in an elementary school to examine how the advantages of using stereoscopic 3D images could be applied in education. More specifically, we selected a unit of the Tumulus period in Japan for sixth-graders as the source of our 3D educational materials. This unit represents part of the coursework for the topic of Japanese history. The educational materials used in our study included stereoscopic 3D images for examining the stone chambers and Haniwa (i.e., terracotta clay figures) of the Tumulus period. The results of our experimental class showed that 3D educational materials helped students focus on specific parts in images such as attached objects of the Haniwa and also understand 3D spaces and concavo-convex shapes. The experimental class revealed that 3D educational materials also helped students come up with novel questions regarding attached objects of the Haniwa, and Haniwa's spatial balance and spatial alignment. The results suggest that the educational use of stereoscopic 3D images is worthwhile in that they lead to question and hypothesis generation and an inquiry-based learning approach to history.

  • New Narrow-Band Luminescence Using Lanthanide Coordination Compounds for Light-Emitting Diodes Open Access

    Seo Young IM  Da Hyeon GO  Jeong Gon RYU  Young Sic KIM  

     
    INVITED PAPER

      Page(s):
    1021-1025

    For ternary system, both anionic carboxylate ligand, namely, 4,4'-oxybis(benzoic acid)(H2oba) and different auxiliary ligand, namely, 1,10-phenanthroline(Phen), pyrazino[2,3-f][1,10]phenanthroline (dpq) and 1H-imidazole[2,3-f][1,10]phenanthroline(IP) have been designed and employed for the construction of a series of lanthanide compounds (Tb3+, Eu3+). The results of photoluminescence spectra of the compounds show the different optimal excitation spectra that make it closer to UV/Blue range.

  • Power Reduction of OLED Displays by Tone Mapping Based on Helmholtz-Kohlrausch Effect

    Tomokazu SHIGA  Soshi KITAHARA  

     
    PAPER

      Page(s):
    1026-1030

    The Helmholtz-Kohlraush effect is a visual characteristic that humans perceive color having higher saturation as brighter. In the proposed method, the pixel value is reduced by increasing the saturation while maintaining the hue and value of HSV color space, resulting in power saving of OLED displays since the power consumption of OLED displays directly depends on the pixel value. Although the luminance decreases, brightness of image is maintained by the Helmholtz-Kohlraush effect. In order to suppress excessive increase of saturation, the increase factor of saturation is reduced with an increase in brightness. As maximum increase factor of saturation, kMAX, increases, more power is reduced but unpleasant color change takes place. From the subjective evaluation experiment with the 23 test images consisting of skin, natural and non-natural images, it is found that kMAX is less than 2.0 to suppress the unpleasant color change. When kMAX is 2.0, the power saving is 8.0%. The effectiveness of the proposed technique is confirmed by using a smart phone having 4.5 inches diagonal RGB AMOLED display.

  • Enhanced Depiction of High Dynamic Images Using Tone Mapping Operator and Chromatic Adaptation Transform

    Ho-Hyoung CHOI  Byoung-Ju YUN  

     
    BRIEF PAPER

      Page(s):
    1031-1034

    The problem of reproducing high dynamic range (HDR) images on devices with a restricted dynamic range has gained a lot of interest in the computer graphics community. Various approaches to this issue exist, spanning several research areas, including computer graphics, image processing, color vision, and physiology. However, most of the approaches to the issue have several serious well-known color distortion problems. Accordingly, this article presents a tone-mapping method. The proposed method comprises the tone-mapping operator and the chromatic adaptation transform. The tone-mapping method is combined with linear and non-linear mapping using visual gamma based on contrast sensitive function (CSF) and using key of scene value, where the visual gamma is adopted to automatically control the dynamic range, parameter free, as well as to avoid both the luminance shift and the hue shift in the displayed images. Furthermore, the key of scene value is used to represent whether the scene was subjectively light, norm, dark. The resulting image is then processed through a chromatic adaptation transform and emphasis lies in human visual perception (HVP). The experiment results show that the proposed method yields better performance of the color rendering over the conventional method in subjective and quantitative quality and color reproduction.

  • A 10 Gbps D-PHY Transmitter Bridge Chip for FPGA-Based Frame Generator Supporting MIPI DSI of Mobile Display

    Ho-Seong KIM  Pil-Ho LEE  Jin-Wook HAN  Seung-Hun SHIN  Seung-Wuk BAEK  Doo-Ill PARK  Yongkyu SEO  Young-Chan JANG  

     
    BRIEF PAPER

      Page(s):
    1035-1038

    A 10 Gbps transmitter bridge chip including four data lanes, which increases the bandwidth using an 8-to-1 serialization, is proposed for a field-programmable gate array (FPGA)-based frame generator to support the protocol of the D-PHY version 1.2 for the mobile industry processor interface (MIPI) display serial interface (DSI).

  • Foldable Liquid Crystal Devices Using Ultra-Thin Polyimide Substrates and Bonding Polymer Spacers

    Yuusuke OBONAI  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Page(s):
    1039-1042

    We developed flexible liquid crystal devices using ultra-thin polyimide substrates and bonding polymer spacers, and discussed the effects of polymer spacer structure on the cell thickness uniformity of flexible LCDs. We clarified that the lattice-shaped polymer spacer is effective to stabilize the cell thickness by suppressing the flow of the liquid crystal during bending process.

  • Simulation of Reconstructed Holographic Images Considering Optical Phase Distribution in Small Liquid Crystal Pixels

    Yoshitomo ISOMAE  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Page(s):
    1043-1046

    We proposed the simulation method of reconstructed holographic images in considering phase distribution in the small pixels of liquid crystal spatial light modulator (LC-SLM) and clarified zero-order diffraction appeared on the reconstructed images when the phase distribution in a single pixel is non-uniform. These results are useful for design of fine LC-SLM for realizing wide-viewing-angle holographic displays.

  • Proposal of Novel Optical Model for Light-Diffusing Film Having Alternating Polymer Layers with Different Refractive Indices

    Souichiro SEO  Masahiro NISHIZAWA  Yuya HORII  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Page(s):
    1047-1051

    We have proposed the novel optical model for layer structure film to precisely control light diffusion angle range. By introducing structure characteristics to the phase grating model, we successfully constructed the novel optical model. In addition, we clarified that difference of refractive indices of layer structure and layer width are important factors for precisely control of light diffusion angle range.

  • Regular Section
  • Fault Analysis and Diagnosis of Coaxial Connectors in RF Circuits

    Rui JI  Jinchun GAO  Gang XIE  Qiuyan JIN  

     
    PAPER-Electromechanical Devices and Components

      Page(s):
    1052-1060

    Coaxial connectors are extensively used in electrical systems and the degradation of the connector can alter the signal that is being transmitted and leads to faults, which is one of the major causes of low communication quality. In this work, the failure features caused by the degraded connector contact surface were studied. The relationship between the DC resistance and decreased real contact areas was given. Considering the inductance properties and capacitive coupling at high frequencies, the impedance characteristics of the degraded connector were discussed. Based on the transmission line theory and experimental measurement, an equivalent lump circuit of the coaxial connector was developed. For the degraded contact surface, the capacitance was analyzed, and the frequency effect was investigated. According to the high frequency characteristics of the degraded connector, a fault detection and location method for coaxial connectors in RF system was developed using a neural network method. For connectors suffering from different levels of pollution, their impedance modulus varies continuously. Considering the range of the connector's impedance parameters, the fault modes were determined. Based on the scattering parameter simulation of a RF receiver front-end circuit, the S11 and S21 parameters were obtained as feature parameters and Monte Carlo simulations were conducted to generate training and testing samples. Based on the BP neural network algorithm, the fault modes were classified and the results show the diagnosis accuracy was 97.33%.

  • A SOI Multi-VDD Dual-Port SRAM Macro for Serial Access Applications

    Nobutaro SHIBATA  Mayumi WATANABE  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Page(s):
    1061-1068

    Multiport SRAMs are frequently installed in network and/or telecommunication VLSIs to implement smart functions. This paper presents a high speed and low-power dual-port (i.e., 1W+1R two-port) SRAM macro customized for serial access operations. To reduce the wasted power dissipation due to subthreshold leakage currents, the supply voltage for 10T memory cells is lowered to 1 V and a power switch is prepared for every 64 word drivers. The switch is activated with look-ahead decoder-segment activation logic, so there is no penalty when selecting a wordline. The data I/O circuitry with a new column-based configuration makes it possible to hide the bitline precharge operation with the sensing operation in the read cycle ahead of it; that is, we have successfully reduced the read latency by a half clock cycle, resulting in a pure two-stage pipeline. The SRAM macro installed in a 4K-entry × 33-bit FIFO memory, fabricated with a 0.3-µm fully-depleted-SOI CMOS process, achieved a 500-MHz operation in the typical conditions of 2- and 1-V power supplies, and 25°C. The power consumption during the standby time was less than 1.0 mW, and that at a practical operating frequency of 400 MHz was in a range of 47-57 mW, depending on the bit-stream data pattern.

  • Compensation for Shot-to-Shot Variations in Laser Pulse Energy for Photoacoustic Imaging

    Ki-Seung LEE  

     
    BRIEF PAPER-Optoelectronics

      Page(s):
    1069-1072

    In photoacoustic imaging, laser power variation is one of the major factors in the degradation of the quality of reproduced images. A simple, but efficient method of compensating for the variations in laser pulse energy is proposed here where the characteristics of the adopted optical sensor and acoustic sensor were estimated in order to minimize the average local variation in optically homogeneous regions. Phantom experiments were carried out to validate the effectiveness of the proposed method.

  • Exploiting Sparse Activation for Low-Power Design of Synchronous Neuromorphic Systems

    Jaeyong CHUNG  Woochul KANG  

     
    BRIEF PAPER-Integrated Electronics

      Page(s):
    1073-1076

    Massive amounts of computation involved in real-time evaluation of deep neural networks pose a serious challenge in battery-powered systems, and neuromorphic systems specialized in neural networks have been developed. This paper first shows the portion of active neurons at a time dwindles as going toward the output layer in recent large-scale deep convolutional neural networks. Spike-based, asynchronous neuromorphic systems take advantage of the sparse activation and reduce dynamic power consumption, while synchronous systems may waste much dynamic power even for the sparse activation due to clocks. We thus propose a clock gating-based dynamic power reduction method that exploits the sparse activation for synchronous neuromorphic systems. We apply the proposed method to a building block of a recently proposed synchronous neuromorphic computing system and demonstrate up to 79% dynamic power saving at a negligible overhead.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.