Shota FUJII Shohei KAKEI Masanori HIROTOMO Makoto TAKITA Yoshiaki SHIRAISHI Masami MOHRI Hiroki KUZUNO Masakatu MORII
Haoran LUO Tengfei SHAO Tomoji KISHI Shenglei LI
Chee Siang LEOW Tomoki KITAGAWA Hideaki YAJIMA Hiromitsu NISHIZAKI
Dengtian YANG Lan CHEN Xiaoran HAO
Rong HUANG Yue XIE
Toshiki ONISHI Asahi OGUSHI Ryo ISHII Akihiro MIYATA
Meihua XUE Kazuki SUGITA Koichi OTA Wen GU Shinobu HASEGAWA
Jinyong SUN Zhiwei DONG Zhigang SUN Guoyong CAI Xiang ZHAO
Yusuke HIROTA Yuta NAKASHIMA Noa GARCIA
Yusuke HIROTA Yuta NAKASHIMA Noa GARCIA
Kosetsu TSUKUDA Tomoyasu NAKANO Masahiro HAMASAKI Masataka GOTO
ZhengYu LU PengFei XU
Binggang ZHUO Ryota HONDA Masaki MURATA
Qingqing YU Rong JIN
Huawei TAO Ziyi HU Sixian LI Chunhua ZHU Peng LI Yue XIE
Qianhang DU Zhipeng LIU Yaotong SONG Ningning WANG Zeyuan JU Shangce GAO
Ryota TOMODA Hisashi KOGA
Reina SASAKI Atsuko TAKEFUSA Hidemoto NAKADA Masato OGUCHI
So KOIDE Yoshiaki TAKATA Hiroyuki SEKI
Huang Rong Qian Zewen Ma Hao Han Zhezhe Xie Yue
Huu-Long PHAM Ryota MIBAYASHI Takehiro YAMAMOTO Makoto P. KATO Yusuke YAMAMOTO Yoshiyuki SHOJI Hiroaki OHSHIMA
Taku WAKUI Fumio TERAOKA Takao KONDO
Shaobao Wu Zhihua Wu Meixuan Huang
Koji KAMMA Toshikazu WADA
Dingjie PENG Wataru KAMEYAMA
Zhizhong WANG Wen GU Zhaoxing LI Koichi OTA Shinobu HASEGAWA
Tomoaki YAMAZAKI Seiya ITO Kouzou OHARA
Daihei ISE Satoshi KOBAYASHI
Masanari ICHIKAWA Yugo TAKEUCHI
Shota SUZUKI Satoshi ONO
Reoma MATSUO Toru KOIZUMI Hidetsugu IRIE Shuichi SAKAI Ryota SHIOYA
Hirotaka HACHIYA Fumiya NISHIZAWA
Issa SUGIURA Shingo OKAMURA Naoto YANAI
Mudai KOBAYASHI Mohammad Mikal Bin Amrul Halim Gan Takahisa SEKI Takahiro HIROFUCHI Ryousei TAKANO Mitsuhiro KISHIMOTO
Chi ZHANG Luwei ZHANG Toshihiko YAMASAKI
Jung Min Lim Wonho Lee Jun-Hyeong Choi Jong Wook Kwak
Zhuo ZHANG Donghui LI Kun JIANG Ya LI Junhu WANG Xiankai MENG
Takayoshi SHIKANO Shuichi ICHIKAWA
Shotaro ISHIKURA Ryosuke MINAMI Miki YAMAMOTO
Pengfei ZHANG Jinke WANG Yuanzhi CHENG Shinichi TAMURA
Fengqi GUO Qicheng LIU
Runlong HAO Hui LUO Yang LI
Rongchun XIAO Yuansheng LIU Jun ZHANG Yanliang HUANG Xi HAN
Yong JIN Kazuya IGUCHI Nariyoshi YAMAI Rei NAKAGAWA Toshio MURAKAMI
Toru HASEGAWA Yuki KOIZUMI Junji TAKEMASA Jun KURIHARA Toshiaki TANAKA Timothy WOOD K. K. RAMAKRISHNAN
Rikima MITSUHASHI Yong JIN Katsuyoshi IIDA Yoshiaki TAKAI
Zezhong LI Jianjun MA Fuji REN
Lorenzo Mamelona TingHuai Ma Jia Li Bright Bediako-Kyeremeh Benjamin Kwapong Osibo
Wonho LEE Jong Wook KWAK
Xiaoxiao ZHOU Yukinori SATO
Kento WATANABE Masataka GOTO
Kazuyo ONISHI Hiroki TANAKA Satoshi NAKAMURA
Takashi YOKOTA Kanemitsu OOTSU
Chenbo SHI Wenxin SUN Jie ZHANG Junsheng ZHANG Chun ZHANG Changsheng ZHU
Masateru TSUNODA Ryoto SHIMA Amjed TAHIR Kwabena Ebo BENNIN Akito MONDEN Koji TODA Keitaro NAKASAI
Masateru TSUNODA Takuto KUDO Akito MONDEN Amjed TAHIR Kwabena Ebo BENNIN Koji TODA Keitaro NAKASAI Kenichi MATSUMOTO
Hiroaki AKUTSU Ko ARAI
Lanxi LIU Pengpeng YANG Suwen DU Sani M. ABDULLAHI
Xiaoguang TU Zhi HE Gui FU Jianhua LIU Mian ZHONG Chao ZHOU Xia LEI Juhang YIN Yi HUANG Yu WANG
Yingying LU Cheng LU Yuan ZONG Feng ZHOU Chuangao TANG
Jialong LI Takuto YAMAUCHI Takanori HIRANO Jinyu CAI Kenji TEI
Wei LEI Yue ZHANG Hanfeng XIE Zebin CHEN Zengping CHEN Weixing LI
David CLARINO Naoya ASADA Atsushi MATSUO Shigeru YAMASHITA
Takashi YOKOTA Kanemitsu OOTSU
Xiaokang Jin Benben Huang Hao Sheng Yao Wu
Tomoki MIYAMOTO
Ken WATANABE Katsuhide FUJITA
Masashi UNOKI Kai LI Anuwat CHAIWONGYEN Quoc-Huy NGUYEN Khalid ZAMAN
Takaharu TSUBOYAMA Ryota TAKAHASHI Motoi IWATA Koichi KISE
Chi ZHANG Li TAO Toshihiko YAMASAKI
Ann Jelyn TIEMPO Yong-Jin JEONG
Jiakun LI Jiajian LI Yanjun SHI Hui LIAN Haifan WU
Nikolay FEDOROV Yuta YAMASAKI Masateru TSUNODA Akito MONDEN Amjed TAHIR Kwabena Ebo BENNIN Koji TODA Keitaro NAKASAI
Yukasa MURAKAMI Yuta YAMASAKI Masateru TSUNODA Akito MONDEN Amjed TAHIR Kwabena Ebo BENNIN Koji TODA Keitaro NAKASAI
Akira ITO Yoshiaki TAKAHASHI
Rindo NAKANISHI Yoshiaki TAKATA Hiroyuki SEKI
Chuzo IWAMOTO Ryo TAKAISHI
Koichi FUJII Tomomi MATSUI
Kazuyuki AMANO
Takumi SHIOTA Tonan KAMATA Ryuhei UEHARA
Hitoshi MURAKAMI Yutaro YAMAGUCHI
Kento KIMURA Tomohiro HARAMIISHI Kazuyuki AMANO Shin-ichi NAKANO
Ryotaro MITSUBOSHI Kohei HATANO Eiji TAKIMOTO
Naohito MATSUMOTO Kazuhiro KURITA Masashi KIYOMI
Tomohiro KOBAYASHI Tomomi MATSUI
Shin-ichi NAKANO
Ming PAN
Keiichirou KUSAKARI Yuki CHIBA
The completeness (i.e. confluent and terminating) property is an important concept when using a term rewriting system (TRS) as a computational model of functional programming languages. Knuth and Bendix have proposed a procedure known as the KB procedure for generating a complete TRS. A TRS cannot, however, directly handle higher-order functions that are widely used in functional programming languages. In this paper, we propose a higher-order KB procedure that extends the KB procedure to the framework of a simply-typed term rewriting system (STRS) as an extended TRS that can handle higher-order functions. We discuss the application of this higher-order KB procedure to a certification technique called inductionless induction used in program verification, and its application to fusion transformation, a typical kind of program transformation.
Recently, research on parallel processing systems is very active, and many complex topologies have been proposed. A burnt pancake graph is one such topology. In this paper, we prove that a faulty burnt pancake graph with degree n has a fault-free Hamiltonian cycle if the number of the faulty elements is n-2 or less, and it has a fault-free Hamiltonian path between any pair of nonfaulty nodes if the number of the faulty elements is n-3 or less.
The model selection for neural networks is an essential procedure to get not only high levels of generalization but also a compact data model. Especially in terms of getting the compact model, neural networks usually outperform other kinds of machine learning methods. Generally, models are selected by trial and error testing using whole learning samples given in advance. In many cases, however, it is difficult and time consuming to prepare whole learning samples in advance. To overcome these inconveniences, we propose a hybrid on-line learning system for a radial basis function (RBF) network that repeats quick learning of novel instances by rote during on-line periods (awake phases) and repeats pseudo rehearsal for model selection during out-of-service periods (sleep phases). We call this system Incremental Learning with Sleep (ILS). During sleep phases, the system basically stops the learning of novel instances, and during awake phases, the system responds quickly. We also extended the system so as to shorten the periodic sleep periods. Experimental results showed the system selects more compact data models than those selected by other machine learning systems.
Wei SUN Yuanyuan ZHANG Yasushi INOGUCHI
Heterogeneous distributed computing environments are well suited to meet the fast increasing computational demands. Task scheduling is very important for a heterogeneous distributed system to satisfy the large computational demands of applications. The performance of a scheduler in a heterogeneous distributed system normally has something to do with the dynamic task flow, that is, the scheduler always suffers from the heterogeneity of task sizes and the variety of task arrivals. From the long-term viewpoint it is necessary and possible to improve the performance of the scheduler serving the dynamic task flow. In this paper we propose a task scheduling method including a scheduling strategy which adapts to the dynamic task flow and a genetic algorithm which can achieve the short completion time of a batch of tasks. The strategy and the genetic algorithm work with each other to enhance the scheduler's efficiency and performance. We simulated a task flow with enough tasks, the scheduler with our strategy and algorithm, and the schedulers with other strategies and algorithms. We also simulated a complex scenario including the variant arrival rate of tasks and the heterogeneous computational nodes. The simulation results show that our scheduler achieves much better scheduling results than the others, in terms of the average waiting time, the average response time, and the finish time of all tasks.
Alfonso RODRIGUEZ Eduardo FERNANDEZ-MEDINA Mario PIATTINI
Business Processes are considered a crucial issue by many enterprises because they are the key to maintain competitiveness. Moreover, business processes are important for software developers, since they can capture from them the necessary requirements for software design and creation. Besides, business process modeling is the center for conducting and improving how the business is operated. Security is important for business performance, but traditionally, it is considered after the business processes definition. Empirical studies show that, at the business process level, customers, end users, and business analysts are able to express their security needs. In this work, we will present a proposal aimed at integrating security requirements through business process modeling. We will summarize our Business Process Modeling Notation extension for modeling secure business process through Business Process Diagrams, and we will apply this approach to a typical health-care business process.
In human-computer interaction, Fitts' law has been applied in one-dimensional pointing task evaluation for some decades, and the usage of effective target width (We) in Fitts' law has been accepted as an international standard in ISO standards 9241-9 [4]. However, the discussion on the concrete methods for calculating We has not been developed comprehensively nor have the different methods of calculation been integrated. Therefore, this paper focuses on a detailed description and a comparison of the two main We calculation methods. One method is mapping all the abscissa data in one united relative coordinate system to perform the calculation (called CC method) and the other is dividing the data into two groups and mapping them in two separate coordinate systems (called SC method). We tested the accuracy of each method and compared both methods in a highly controlled experiment. The experiments' results and data analysis show that the CC method is better than the SC method for human computer interface modeling. These results will be instrumental for future application of Fitts' law.
Javier R. SAETA Javier HERNANDO
The selection of the most representative utterances coming from a speaker is essential for the right performance of automatic enrollment in speaker verification. Model quality measures and threshold estimation methods mainly deal with the scarcity of data and the difficulty of obtaining data from impostors in real applications. Conventional methods estimate the quality of the training utterances once the model is created. In such case, it is not possible to ask the user for more utterances during the training session if necessary. A new training session must be started. That was especially unusable in applications where only one or two enrolment sessions were allowed. In this paper, a new on-line quality method based on a male and a female Universal Background Model (UBM) is introduced. The two models act as a reference for new utterances and show if they belong to the same speaker and provide a measure of its quality at the same time. On the other hand, the estimation of the verification threshold is also strongly influenced by the previous selection of the speaker's utterances. In this context, potential outliers, i.e., those client scores which are distant with regard to mean, could lead to wrong mean and variance client estimations. To alleviate this problem, some efficient threshold estimation methods based on removing or weighting scores are proposed here. Before estimating the threshold, the client scores catalogued as outliers are removed, pruned or weighted, improving subsequent estimations. Text-dependent experiments have been carried out by using a telephonic multi-session database in Spanish. The database has been recorded by the authors and has 184 speakers.
Chunsheng HUA Haiyuan WU Qian CHEN Toshikazu WADA
In this paper, we present a general object tracking method based on a newly proposed pixel-wise clustering algorithm. To track an object in a cluttered environment is a challenging issue because a target object may be in concave shape or have apertures (e.g. a hand or a comb). In those cases, it is difficult to separate the target from the background completely by simply modifying the shape of the search area. Our algorithm solves the problem by 1) describing the target object by a set of pixels; 2) using a K-means based algorithm to detect all target pixels. To realize stable and reliable detection of target pixels, we firstly use a 5D feature vector to describe both the color ("Y, U, V") and the position ("x, y") of each pixel uniformly. This enables the simultaneous adaptation to both the color and geometric features during tracking. Secondly, we use a variable ellipse model to describe the shape of the search area and to model the surrounding background. This guarantees the stable object tracking under various geometric transformations. The robust tracking is realized by classifying the pixels within the search area into "target" and "background" groups with a K-means clustering based algorithm that uses the "positive" and "negative" samples. We also propose a method that can detect the tracking failure and recover from it during tracking by making use of both the "positive" and "negative" samples. This feature makes our method become a more reliable tracking algorithm because it can discover the target once again when the target has become lost. Through the extensive experiments under various environments and conditions, the effectiveness and efficiency of the proposed algorithm is confirmed.
Thatsanee CHAROENPORN Canasai KRUENGKRAI Thanaruk THEERAMUNKONG Virach SORNLERTLAMVANICH
Manually collecting contexts of a target word and grouping them based on their meanings yields a set of word senses but the task is quite tedious. Towards automated lexicography, this paper proposes a word-sense discrimination method based on two modern techniques; EM algorithm and principal component analysis (PCA). The spherical Gaussian EM algorithm enhanced with PCA for robust initialization is proposed to cluster word senses of a target word automatically. Three variants of the algorithm, namely PCA, sGEM, and PCA-sGEM, are investigated using a gold standard dataset of two polysemous words. The clustering result is evaluated using the measures of purity and entropy as well as a more recent measure called normalized mutual information (NMI). The experimental result indicates that the proposed algorithms gain promising performance with regard to discriminate word senses and the PCA-sGEM outperforms the other two methods to some extent.
Hideki NODA Yohsuke TSUKAMIZU Michiharu NIIMI
This paper presents two steganographic methods for JPEG2000 still images which approximately preserve histograms of discrete wavelet transform coefficients. Compared with a conventional JPEG2000 steganography, the two methods show better histogram preservation. The proposed methods are promising candidates for secure JPEG2000 steganography against histogram-based attack.
Shiuh-Ku WENG Chung-Ming KUO Wei-Cung KANG
This letter presents a simple scheme to transform colors to some representative classes for color information reduction. Then, the weighted distributions of color index histogram (CIH) and local binary pattern (LBP) are applied to measure the similarity of adjacent texture regions during the segmentation process. In addition, for improving the segmentation accuracy, an efficient boundary checking algorithm is proposed. The proposed method not only saves execution time but also segments the distinct texture regions correctly.
Seongeun EOM Vladimir SHIN Byungha AHN
The watershed transform has been used as a powerful morphological segmentation tool in a variety of image processing applications. This is because it gives a good segmentation result if a topographical relief and markers are suitably chosen for different type of images. This paper proposes a parallel implementation of the watershed transform on the cellular neural network (CNN) universal machine, called cellular watersheds. Owing to its fine grain architecture, the watershed transform can be parallelized using local information. Our parallel implementation is based on a simulated immersion process. To evaluate our implementation, we have experimented on the CNN universal chip, ACE16k, for synthetic and real images.