Omar Faruk RASEL Akira YAMAUCHI Takaaki ISHIGURE
This paper introduces a formation method for 3-dimensional 6 ch.×6 ch. shuffling structures with graded-index (GI) circular core in a multimode polymer optical waveguide for optical printed circuit boards (OPCBs) using a unique photomask-free fabrication technique named the Mosquito method. The interchannel pitch of the fabricated waveguides is 250µm, where all the channels consist of both horizontal and vertical bending structures and the last 6 channels in parallel cross over the first 6 channels. We also report 3-dimensional S-shaped polymer waveguides. In the S-shaped waveguides, the first and last 6 channels with both horizontal and vertical core bending composing the above 3-dimensional shuffling waveguide are separated, in order to evaluate the effect of over-crossing on the loss. It is experimentally confirmed that there is no excess insertion loss due to the shuffling structure in the 3-D shuffling waveguide. The evaluated crosstalk of the 3-D shuffling waveguide is lower than -30dB. The 3-D shuffling waveguide proposed in this paper will be a promising component to achieve high bandwidth density wiring for on-board optical interconnects.
Kentaro TOKORO Shunsuke SAITO Kensaku KANOMATA Masanori MIURA Bashir AHMMAD Shigeru KUBOTA Fumihiko HIROSE
We report room-temperature atomic layer deposition (ALD) of SnO2 using tetramethyltin (TMT) as a precursor and plasma-excited humidified argon as an oxidizing gas and investigate the saturation behaviors of these gases on SnO2-covered Si prisms by IR absorption spectroscopy to determine optimal precursor/oxidizer injection conditions. TMT is demonstrated to adsorb on the SnO2 surface by reacting with surface OH groups, which are regenerated by oxidizing the TMT-saturated surface by plasma-excited humidified argon. We provide a detailed discussion of the growth mechanism. We also report the RT ALD application to the RT TFT fabrication.
Alimujiang YASEN Kazunori UEDA
We develop a technique for representing variable names and name binding which is a mechanism of associating a name with an entity in many formal systems including logic, programming languages and mathematics. The idea is to use a general form of graph links (or edges) called hyperlinks to represent variables, graph nodes as constructors of the formal systems, and a graph type called hlground to define substitutions. Our technique is based on simple notions of graph theory in which graph types ensure correct substitutions and keep bound variables distinct. We encode strong reduction of the untyped λ-calculus to introduce our technique. Then we encode a more complex formal system called System F<:, a polymorphic λ-calculus with subtyping that has been one of important theoretical foundations of functional programming languages. The advantage of our technique is that the representation of terms, definition of substitutions, and implementation of formal systems are all straightforward. We formalized the graph type hlground, proved that it ensures correct substitutions in the λ-calculus, and implemented hlground in HyperLMNtal, a modeling language based on hypergraph rewriting. Experiments were conducted to test this technique. By this technique, one can implement formal systems simply by following the steps of their definitions as described in papers.
This study proposes a maximum-likelihood-estimation method for a quadrotor UAV given the existence of sensor delays. The state equation of the UAV is nonlinear, and thus, we propose an approximated method that consists of two steps. The first step estimates the past state based on the delayed output through an extended Kalman filter. The second step involves calculating an estimate of the present state by simulating the original system from the past to the present. It is proven that the proposed method provides an approximated maximum-likelihood-estimation. The effectiveness of the estimator is verified by performing experiments.
Donggu KIM Hoojin LEE Joonhyuk KANG
To effectively analyze the influence of two-wave with diffuse power (TWDP) fading on the achievable error rate performance of binary phase-shift keying (BPSK) signaling, we derive two novel concise asymptotic closed-form bit error rate (BER) formulas. We perform asymptotic analysese based on existing exact and approximate BER formulas, which are obtained from the exact probability density function (PDF) or moment generating function (MGF), and the approximate PDF of TWDP fading. The derived asymptotic closed-form expressions yield explicit insights into the achievable error rate performance in TWDP fading environments. Furthermore, the absolute relative error (ARE) between the exact and approximate coding gains is investigated, from which we also propose a criterion for the order of an approximate PDF, which is more robust than the conventional criterion. Numerical results clearly demonstrate the accuracy of the derived asymptotic formulas, and also support our proposed criterion.
Jinyang SONG Feng SHEN Xiaobo CHEN Di ZHAO
In this letter, robust sparse signal recovery is considered in the presence of heavy-tailed impulsive noise. Two Bayesian approaches are developed where a Bayesian framework is constructed by utilizing the Laplace distribution to model the noise. By rewriting the noise-fitting term as a reweighted quadratic function which is optimized in the sparse signal space, the Type I Maximum A Posteriori (MAP) approach is proposed. Next, by exploiting the hierarchical structure of the sparse prior and the likelihood function, we develop the Type II Evidence Maximization approach optimized in the hyperparameter space. The numerical results verify the effectiveness of the proposed methods in the presence of impulsive noise.
A circuit-aging simulation that efficiently calculates temporal change of rare circuit-failure probability is proposed. While conventional methods required a long computational time due to the necessity of conducting separate calculations of failure probability at each device age, the proposed Monte Carlo based method requires to run only a single set of simulation. By applying the augmented reliability and subset simulation framework, the change of failure probability along the lifetime of the device can be evaluated through the analysis of the Monte Carlo samples. Combined with the two-step sample generation technique, the proposed method reduces the computational time to about 1/6 of that of the conventional method while maintaining a sufficient estimation accuracy.
In this paper, we propose a novel error recovery method for massive multiple-input multiple-output (MIMO) signal detection, which improves an estimate of transmitted signals by taking advantage of the sparsity and the discreteness of the error signal. We firstly formulate the error recovery problem as the maximum a posteriori (MAP) estimation and then relax the MAP estimation into a convex optimization problem, which reconstructs a discrete-valued sparse vector from its linear measurements. By using the restricted isometry property (RIP), we also provide a theoretical upper bound of the size of the reconstruction error with the optimization problem. Simulation results show that the proposed error recovery method has better bit error rate (BER) performance than that of the conventional error recovery method.
Wataru NAKAMURA Hirosuke YAMAMOTO Terence CHAN
In this paper, we treat (k, L, n) ramp secret sharing schemes (SSSs) that can detect impersonation attacks and/or substitution attacks. First, we derive lower bounds on the sizes of the shares and random number used in encoding for given correlation levels, which are measured by the mutual information of shares. We also derive lower bounds on the success probabilities of attacks for given correlation levels and given sizes of shares. Next we propose a strong (k, L, n) ramp SSS against substitution attacks. As far as we know, the proposed scheme is the first strong (k, L, n) ramp SSSs that can detect substitution attacks of at most k-1 shares. Our scheme can be applied to a secret SL uniformly distributed over GF(pm)L, where p is a prime number with p≥L+2. We show that for a certain type of correlation levels, the proposed scheme can achieve the lower bounds on the sizes of the shares and random number, and can reduce the success probability of substitution attacks within nearly L times the lower bound when the number of forged shares is less than k. We also evaluate the success probability of impersonation attack for our schemes. In addition, we give some examples of insecure ramp SSSs to clarify why each component of our scheme is essential to realize the required security.
Yuusuke OBONAI Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
We developed flexible liquid crystal devices using ultra-thin polyimide substrates and bonding polymer spacers, and discussed the effects of polymer spacer structure on the cell thickness uniformity of flexible LCDs. We clarified that the lattice-shaped polymer spacer is effective to stabilize the cell thickness by suppressing the flow of the liquid crystal during bending process.
Shuichi HONDA Takahiro ISHINABE Yosei SHIBATA Hideo FUJIKAKE
We investigated the effects of a bending stress on the change in phase retardation of curved polycarbonate substrates and optical characteristics of flexible liquid crystal displays (LCDs). We clarified that the change in phase retardation was extremely small even for the substrates with a small radius of curvature, because bending stresses occurred in the inner and upper surfaces are canceled each other out. We compensated for the phase retardation of polycarbonate substrates by a positive C-plate and successfully suppressed light leakage in both non-curved and curved states. These results indicate the feasibility of high-quality flexible LCDs using polycarbonate substrates even in curved states.
Wataru KOBAYASHI Naoki FUJIWARA Takahiko SHINDO Yoshitaka OHISO Shigeru KANAZAWA Hiroyuki ISHII Koichi HASEBE Hideaki MATSUZAKI Mikitaka ITOH
We propose a novel structure that can reduce the power consumption and extend the transmission distance of an electro-absorption modulator integrated with a DFB (EADFB) laser. To overcome the trade-off relationship of the optical loss and chirp parameter of the EA modulator, we integrate a semiconductor optical amplifier (SOA) with an EADFB laser. With the proposed SOA assisted extended reach EADFB laser (AXEL) structure, the LD and SOA sections are operated by an electrically connected input port. We describe a design for AXEL that optimizes the LD and SOA length ratio when their total operation current is 80mA. By using the designed AXEL, the power consumption of a 10-Gbit/s, 1.55-µm EADFB laser is reduced by 1/2 and at the same time the transmission distance is extended from 80 to 100km.
Takafumi HAYASHI Yodai WATANABE Takao MAEDA Shinya MATSUFUJI
The present paper introduces a novel construction of structured ternary sequences having a zero-correlation zone (ZCZ) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the ZCZ. The proposed ZCZ sequence set can be generated from an arbitrary Hadamard matrix of order n. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m≥0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set of order m has 2m subsets of size n. The length of the sequence is equal to n4m+2m+1(2m-1); The phase shift of the ZCZ for the whole sequence set is from -(2m-1) to (2m-1). The sequence set of order 0 is coincident with the rows of the given Hadamard sequence with no ZCZ. The subsets can be associated with a perfect binary tree of height m with 2m leaves. The r-th sequence subset consists of from the nr-th sequence to the ((n+1)r-1)-th sequence. The r-th subset is assigned to the r-th leaf of the perfect binary tree. For a longer distance between the corresponding leaves to the r-th and s-th sequences, the ZCZ of the r-th and s-th sequences is wider. This tree-structured width of ZCZ of a pair of the proposed sequences enables flexible design in applications of the proposed sequence set. The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth generation of radio access networks.
Shuichi KATSUMATA Noboru KUNIHIRO
Subspace membership encryption (SME), a generalization of inner product encryption (IPE), was recently formalized by Boneh, Raghunathan, and Segev in Asiacrypt 2013. The main motivation for SME was that traditional predicate encryptions did not yield function privacy, a security notion introduced by Boneh et al. in Crypto 2013 that captures the privacy of the predicate associated to the secret key. Although they gave a generic construction of SME based on any IPE, we show that their construction of SME for small attribute space was incorrect and provide an attack that breaks the attribute hiding security, a baseline security notion for predicate encryptions that captures the privacy of the attribute associated with the ciphertext. Then, we propose a generalized construction of SME and prove that the attribute hiding security can not be achieved even in the newly defined setting. Finally, we further extend our generalized construction of SME and propose a SME that achieves the attribute hiding property even when the attribute space is small. In exchange our proposed scheme does not yield function privacy and the construction is rather inefficient. Although we did not succeed in constructing a SME both yielding function privacy and attribute hiding security, ours is the first attribute hiding SME scheme whose attribute space is polynomial in the security parameter, and we formalized a richer framework for constructing SMEs and discovered a trade-off like relationship between the two security notions.
In both theoretical analysis and practical use for an antidictionary coding algorithm, an important problem is how to encode an antidictionary of an input source. This paper presents a proposal for a compact tree representation of an antidictionary built from a circular string for an input source. We use a technique for encoding a tree in the compression via substring enumeration to encode a tree representation of the antidictionary. Moreover, we propose a new two-pass universal antidictionary coding algorithm by means of the proposal tree representation. We prove that the proposed algorithm is asymptotic optimal for a stationary ergodic source.
Yuta TAKATA Mitsuaki AKIYAMA Takeshi YAGI Takeshi YADA Shigeki GOTO
An incident response organization such as a CSIRT contributes to preventing the spread of malware infection by analyzing compromised websites and sending abuse reports with detected URLs to webmasters. However, these abuse reports with only URLs are not sufficient to clean up the websites. In addition, it is difficult to analyze malicious websites across different client environments because these websites change behavior depending on a client environment. To expedite compromised website clean-up, it is important to provide fine-grained information such as malicious URL relations, the precise position of compromised web content, and the target range of client environments. In this paper, we propose a new method of constructing a redirection graph with context, such as which web content redirects to malicious websites. The proposed method analyzes a website in a multi-client environment to identify which client environment is exposed to threats. We evaluated our system using crawling datasets of approximately 2,000 compromised websites. The result shows that our system successfully identified malicious URL relations and compromised web content, and the number of URLs and the amount of web content to be analyzed were sufficient for incident responders by 15.0% and 0.8%, respectively. Furthermore, it can also identify the target range of client environments in 30.4% of websites and a vulnerability that has been used in malicious websites by leveraging target information. This fine-grained analysis by our system would contribute to improving the daily work of incident responders.
Sasinee PRUEKPRASERT Toshimitsu USHIO
This paper studies the supervisory control of partially observed quantitative discrete event systems (DESs) under the fixed-initial-credit energy objective. A quantitative DES is modeled by a weighted automaton whose event set is partitioned into a controllable event set and an uncontrollable event set. Partial observation is modeled by a mapping from each event and state of the DES to the corresponding masked event and masked state that are observed by a supervisor. The supervisor controls the DES by disabling or enabling any controllable event for the current state of the DES, based on the observed sequences of masked states and masked events. We model the control process as a two-player game played between the supervisor and the DES. The DES aims to execute the events so that its energy level drops below zero, while the supervisor aims to maintain the energy level above zero. We show that the proposed problem is reducible to finding a winning strategy in a turn-based reachability game.
Bo YI Peiguo LIU Qihui ZHOU Tengguang FAN
In this paper, a miniaturized absorptive/transmissive radome with switchable passband and wide absorbing band is designed. Pin diodes are loaded on the radome in order to obtain switchable passband and miniaturized unit cells, while the resistor loaded double square loops are used to absorb the incident wave. The total thickness of the radome is only 4.5mm. Its transmission and absorbing properties are verified by both synthetic experiments and measurements in the anechoic chamber. Furthermore, the switchable passband of the radome is also evaluated using a waveguide simulator.
Yanzan SUN Zhijuan WANG Tao WANG Yating WU Yong FANG
LTE-Advanced heterogeneous networks (HetNets), consisting of conventional Macrocells overlaid by Picocells and forming a hierarchical cell structure, constitute an attractive way of improving the Macrocell capacity and coverage. However, the inter-tier interferences in such systems can significantly reduce the capacity and cause unacceptably high levels of control channel outage. Thus time domain Enhanced Inter-cell Interference Coordination (eICIC), such as almost blank subframe (ABS) and cell range expansion (CRE) techniques, has been proposed to mitigate the interference and improve the system capacity in HetNets. In order to acquire the benefit of eICIC technology efficiently, the three parameters, i.e. ABS ratio, ABS power and CRE bias, should be carefully configured jointly. Motivated by the above considerations, we first propose a single parameter optimization algorithm that fixes the other two parameters and then optimizes them separately. Then, a heuristic joint parameter optimization algorithm is proposed to maximize the system throughput. Extensive simulation results illustrate that the proposed algorithms clearly outperform the fixed parameter configuration, and is close to that of the traversal search algorithm even though they have lower computation complexity
Kyoungsoo BOK Yonghun PARK Jaesoo YOO
Recently, several methods to process continuous queries for mobile objects in broadcast environments have been proposed. We propose a new indexing method for processing continuous queries that uses vector information in broadcast environments. We separate the index structure according to the velocities of the objects to avoid unnecessary accesses. The index structure consists of the index files for the slow moving objects and the fast moving objects. By avoiding unnecessary accesses, we reduce the tuning time to process a query in broadcast environments. To show the superiority of the proposed method, we evaluate its performance from various perspectives.