Keyword Search Result

[Keyword] DAA(6hit)

1-6hit
  • Evaluations for Estimation Method of the Distributed Array Antenna (DAA) Radiation Pattern by Experimental Analysis

    Daisuke GOTO  Fumihiro YAMASHITA  Kouhei SUZAKI  Hideya SO  Yoshinori SUZUKI  Kiyoshi KOBAYASHI  Naoki KITA  

     
    PAPER-Satellite Communications

      Pubricized:
    2017/12/18
      Vol:
    E101-B No:6
      Page(s):
    1494-1502

    We target the estimation of antenna patterns of distributed array antenna (DAA) systems for satellite communications. Measuring DAA patterns is very difficult because of the large antenna separations involved, more than several tens of wavelengths. Our goal is to elucidate the accuracy of the DAA pattern estimation method whose inputs are actual antenna pattern data and array factors by evaluating their similarity to actually measured DAA radiation patterns. Experiments on two Ku band parabolic antennas show that their patterns can be accurately estimated even if we change the conditions such as frequency, antenna arrangement and polarization. Evaluations reveal that the method has high estimation accuracy since its errors are better than 1dB. We conclude the method is useful for the accurate estimation of DAA patterns.

  • Undesired Radiation Suppression Technique for Distributed Array Antenna by Antenna Positioning and Delay Signal Processing

    Kouhei SUZUKI  Hideya SO  Daisuke GOTO  Yoshinori SUZUKI  Fumihiro YAMASHITA  Katsuya NAKAHIRA  Kiyoshi KOBAYASHI  Takatoshi SUGIYAMA  

     
    PAPER-Satellite Communications

      Pubricized:
    2017/03/01
      Vol:
    E100-B No:10
      Page(s):
    1959-1967

    This paper introduces distributed array antenna (DAA) systems that offer high antenna gain. A DAA consists of several small antennas with improved antenna gain. This paper proposes a technique that suppresses the off-axis undesired radiation and compensates the time delay by combining signal processing with optimization of array element positioning. It suppresses the undesired radiation by compensating the delay timing with high accuracy and deliberately generating the inter-symbol interference (ISI) in side-lobe directions. Computer simulations show its effective suppression of the equivalent isotropic radiated power (EIRP) pattern and its excellent BER performance.

  • Detection Capability of Downlink Signals in Mobile WiMAX and 3GPP LTE with an FFT-Based UWB Receiver

    Kenichi TAKIZAWA  Hirotaka YAMANE  Huan-Bang LI  Feng LU  Kohei OHNO  Takuji MOCHIZUKI  Takashi OKADA  Kunio YATA  Hisashi NISHIKAWA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E96-A No:1
      Page(s):
    285-292

    The paper presents capability of signal detection for realizing coexistence between broadband wireless access (BWA) systems and ultra wideband (UWB) devices. The capability is experimentally evaluated for baseband signals of downlink (DL) in both mobile WiMAX and 3GPP LTE. An UWB receiver based on fast Fourier transform (FFT) compliant with MB-OFDM standard is implemented as a detector of the BWA signals. The capability is evaluated in terms of elapsed time required to achieve signal detection with probability of 99% by the implemented FFT-based UWB receiver at different conditions of the receiver. Decisions on the signal detection are made by the simplest method which is by setting a threshold which is determined by noise floor of the receiver as reference. The experiments have been conducted though baseband signals for both AWGN and multipath fading channels without any synchronization between the DL signals and UWB receiver. In AWGN environment, results show that the elapsed time depends on the duty ratio of the DL signal to be detected, however, the correlation between the required time and duty ratio is not linear since their envelopes of the DL signals are not constant. In multipath fading environments based on channel models commonly employed as mobile radio environments, the required time for the signal detection becomes as 17 times longer than that in AWGN due to its signal attenuation. For robust signal detection in multipath fading environments, it has been revealed that the number of quantization bits at ADC is crucial through the experiments.

  • Primary Signal to Noise Ratio Estimation Based on AIC for UWB Systems

    Masahiro FUJII  Yu WATANABE  

     
    PAPER

      Vol:
    E96-A No:1
      Page(s):
    264-273

    Ultra-Wide-Band (UWB) devices need detect and avoid techniques in order to avoid or reduce interference to primary systems whose spectra overlap bands of the UWB systems. Some avoidance techniques require a knowledge of signal level received from the primary systems to control the transmitted power. Thus, detection schemes have to accurately estimate the primary signal level using the observed signal includes an additive noise and to provide it for the avoidance schemes. In this paper, we propose a new method to estimate the Primary Signal to Noise Ratio (PSNR) for the detection scheme. Our proposed method uses the fast Fourier transform output of a Multi-Band Orthogonal Frequency Division Multiplexing system. We generate models based on whether the primary signals are present, estimate the PSNR using a maximum likelihood criterion in each model and obtain the PSNR estimate by selecting the most preferable model using an Akaike information criterion. The propose method does not need any a priori information of the primary signal and the additive noise. By computer simulations, we evaluate an accuracy of the PSNR estimation of the proposed method.

  • Overview of Research, Development, Standardization, and Regulation Activities in NICT UWB Project

    Ken-ichi TAKIZAWA  Huan-Bang LI  Iwao NISHIYAMA  Jun-ichi TAKADA  Ryuji KOHNO  

     
    INVITED PAPER

      Vol:
    E89-A No:11
      Page(s):
    2996-3005

    This paper presents an overview of research, development, standardization and regulation activities on ultra wideband (UWB) technologies in National Institute of Information and Communications Technology (NICT). NICT started a project on UWB technologies since 2002, and organized UWB consortium in cooperation with more than 20 companies and 7 universities in Japan. Up to now, we have been conducting numerous UWB R&D including the following main works: i) key technology development such as MMIC chips, antennas and other devices, ii) measurement and channel modeling for UWB signal propagation, iii) standardization in international activities of IEEE 802.15, ITU-R TG1/8 as well as in a national regulatory committee of Ministry of Internal Affair and Communications (MIC). The UWB systems we have studied occupy frequency bands range from microwave band (3-5 GHz) to quasi-millimeter wave band (24-29 GHz). Various prototype UWB systems including multi-functional terminals have been developed. The output of NICT has been succeeded by industrial parties with with national and international standardization and regulation.

  • Quality and Power Efficient Architecture for the Discrete Cosine Transform

    Chi-Chia SUNG  Shanq-Jang RUAN  Bo-Yao LIN  Mon-Chau SHIE  

     
    PAPER-VLSI Architecture

      Vol:
    E88-A No:12
      Page(s):
    3500-3507

    In recent years, the demand for multimedia mobile battery-operated devices has created a need for low power implementation of video compression. Many compression standards require the discrete cosine transform (DCT) function to perform image/video compression. For this reason, low power DCT design has become more and more important in today's image/video processing. This paper presents a new power-efficient Hybrid DCT architecture which combines Loeffler DCT and binDCT in terms of special property on luminance and chrominance difference. We use Synopsys PrimePower to estimate the power consumption in a TSMC 0.25-µm technology. Besides, we also adopt a novel quality assessment method based on structural distortion measurement to measure the quality instead of peak signal to noise rations (PSNR) and mean squared error (MSE). It is concluded that our Hybrid DCT offers similar quality performance to the Loeffler, and leads to 25% power consumption and 27% chip area savings.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.