Keyword Search Result

[Keyword] ICI(1227hit)

1-20hit(1227hit)

  • Imperceptible Trojan Attacks to the Graph-Based Big Data Processing in Smart Society Open Access

    Jun ZHOU  Masaaki KONDO  

     
    PAPER

      Pubricized:
    2024/08/07
      Vol:
    E108-D No:1
      Page(s):
    37-45

    Big data processing is a set of techniques or programming models, which can be deployed on both the cloud servers or edge nodes, to access large-scale data and extract useful information for supporting and providing decisions. Meanwhile, several typical domains of human activity in smart society, such as social networks, medical diagnosis, recommendation systems, transportation, and Internet of Things (IoT), often manage a vast collection of entities with various relationships, which can be naturally represented by the graph data structure. As one of the convincing solutions to carry out analytics for big data, graph processing is especially applicable for these application domains. However, either the intra-device or the inter-device data processing in the edge-cloud architecture is truly prone to be attacked by the malicious Trojans covertly embedded in the counterfeit processing systems developed by some third-party vendors in numerous practical scenarios, leading to identity theft, misjudgment, privacy disclosure, and so on. In this paper, for the first time to our knowledge, we specially build a novel attack model for ubiquitous graph processing in detail, which also has easy scalability for other applications in big data processing, and discuss some common existing mitigations accordingly. Multiple activation mechanisms of Trojans designed in our attack model effectively make the attacks imperceptible to users. Evaluations indicate that the proposed Trojans are highly competitive in stealthiness with trivial extra latency.

  • Mixup SVM Learning for Compound Toxicity Prediction Using Human Pluripotent Stem Cells Open Access

    Rikuto MOCHIDA  Miya NAKAJIMA  Haruki ONO  Takahiro ANDO  Tsuyoshi KATO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2024/08/08
      Vol:
    E107-D No:12
      Page(s):
    1542-1545

    Drug discovery, characterized by its time-consuming and costly nature, demands approximately 9 to 17 years and around two billion dollars for development. Despite the extensive investment, about 90% of drugs entering clinical trials face withdrawal, with compound toxicity accounting for 30% of these instances. Ethical concerns and the discrepancy in mechanisms between humans and animals have prompted regulatory restrictions on traditional animal-based toxicity prediction methods. In response, human pluripotent stem cell-based approaches have emerged as an alternative. This paper investigates the scalability challenges inherent in utilizing pluripotent stem cells due to the costly nature of RNAseq and the lack of standardized protocols. To address these challenges, we propose applying Mixup data augmentation, a successful technique in deep learning, to kernel SVM, facilitated by Stochastic Dual Coordinate Ascent (SDCA). Our novel approach, Exact SDCA, leverages intermediate class labels generated through Mixup, offering advancements in both efficiency and effectiveness over conventional methods. Numerical experiments reveal that Exact SDCA outperforms Approximate SDCA and SGD in attaining optimal solutions with significantly fewer epochs. Real data experiments further demonstrate the efficacy of multiplexing gene networks and applying Mixup in toxicity prediction using pluripotent stem cells.

  • Loss Reduction of LLC Converter Using Bridge-Capacitor Open Access

    Toshiyuki WATANABE  Fujio KUROKAWA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E107-B No:12
      Page(s):
    955-964

    Current resonance type of LLC converter is widely used owing to their low switching losses; however, the problem is that they have a large transformer loss. We examine the reduction of AC resistance of the transformer winding and high coupling between the primary and secondary windings of the transformer, as a method for reducing the copper loss. In this case, it is necessary to consider the effects of the increase in stray capacitance between the primary and secondary windings of the transformer. This paper describes the influence of the loss due to the capacitance generated between the transformer windings when a noise filter is connected to the LLC converter. Furthermore, we propose a new method for reducing loss by connecting a bridge-capacitor between the primary and secondary sides of the transformer. The results of the new method are shown, and compared with those of the simulations to demonstrate effectiveness.

  • Cluster-Based Multi-Hop Wake-up Control for Top-k Query in Wireless Sensor Networks Open Access

    Takuya MURAKAMI  Junya SHIRAISHI  Hiroyuki YOMO  

     
    PAPER

      Vol:
    E107-B No:12
      Page(s):
    928-935

    This paper focuses on top-k query in cluster-based multi-hop wireless sensor networks (WSNs) employing wake-up receivers. We aim to design wake-up control that enables a sink to collect top-k data set, i.e., k highest readings of sensor nodes within a network, efficiently in terms of energy consumption and delay. Considering a tree-based clustered WSN, we propose a cluster-based wake-up control, which conducts activations and data collections of different clusters sequentially while the results of data collections at a cluster, i.e., the information on provisional top-k data set, are exploited for reducing unnecessary data transmissions at the other clusters. As a wake-up control employed in each cluster, we consider two different types of control: countdown content-based wake-up (CDCoWu) and identity-based wake-up (IDWu). CDCoWu selectively activates sensor nodes storing data belonging to top-k dataset while IDWu individually wakes up all sensor nodes within a cluster. Based on the observation that the best control depends on the number of cluster members, we introduce a hybrid mechanism of wake-up control, where a wake-up control employed at each cluster is selected between CDCoWu and IDWu based on its number of cluster members. Our simulation results show that the proposed hybrid wake-up control achieves smaller energy consumption and data collection delay than the control solely employing conventional CDCoWu or IDWu.

  • Heart Rate Control System for Walking with Real-Time Heart Rate Prediction Open Access

    Kaiji OWAKI  Yusuke KANDA  Hideaki KIMURA  

     
    BRIEF PAPER

      Pubricized:
    2024/04/23
      Vol:
    E107-C No:11
      Page(s):
    501-505

    In recent years, the declining birthrate and aging population have become serious problems in Japan. To solve these problems, we have developed a system based on edge AI. This system predicts the future heart rate during walking in real time and provides feedback to improve the quality of exercise and extend healthy life expectancy. In this paper, we predicted the heart rate in real time based on the proposed system and provided feedback. Experiments were conducted without and with the predicted heart rate, and a comparison was made to demonstrate the effectiveness of the predicted heart rate.

  • Boolean Functions with Two Distinct Nega-Hadamard Coefficients Open Access

    Jinfeng CHONG  Niu JIANG  Zepeng ZHUO  Weiyu ZHANG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/06/14
      Vol:
    E107-A No:10
      Page(s):
    1603-1608

    In this paper, we consider the spectra of Boolean functions with respect to the nega-Hadamard transform. Based on the properties of the nega-Hadamard transform and the solutions of the Diophantine equations, we investigate all possibilities of the nega-Hadamard transform of Boolean functions with exactly two distinct nega-Hadamard coefficients.

  • Hybrid Precoding for mmWave Massive Beamspace MIMO System with Limited Resolution Overlapped Phase Shifters Network Open Access

    Ting DING  Jiandong ZHU  Jing YANG  Xingmeng JIANG  Chengcheng LIU  

     
    PAPER

      Pubricized:
    2024/03/25
      Vol:
    E107-C No:10
      Page(s):
    355-363

    Considering the non-convexity of hybrid precoding and the hardware constraints of practical systems, a hybrid precoding architecture, which combines limited-resolution overlapped phase shifter networks with lens array, is investigated. The analogy part is a beam selection network composed of overlapped low-resolution phase shifter networks. In particular, in the proposed hybrid precoding algorithm, the analog precoding improves array gain by utilizing the quantization beam alignment method, whereas the digital precoding schemes multiplexing gain by adopting a Wiener Filter precoding scheme with a minimum mean square error criterion. Finally, in the sparse scattering millimeter-wave channel for the uniform linear array, the proposed method is compared with the existing scheme by computer simulation by using the ideal channel state information and the non-ideal channel state information. It is concluded that the proposed scheme performs better in low signal-to-noise regions and can achieve a good compromise between system performance and hardware complexity.

  • Advancements in Terahertz Communication: Harnessing the 300 GHz Band for High-Efficiency, High-Capacity Wireless Networks Open Access

    Minoru FUJISHIMA  

     
    INVITED PAPER

      Pubricized:
    2024/03/08
      Vol:
    E107-C No:10
      Page(s):
    366-375

    In this paper, we delve into wireless communications in the 300 GHz band, focusing in particular on the continuous bandwidth of 44 GHz from 252 GHz to 296 GHz, positioning it as a pivotal element in the trajectory toward 6G communications. While terahertz communications have traditionally been praised for the high speeds they can achieve using their wide bandwidth, focusing the beam has also shown the potential to achieve high energy efficiency and support numerous simultaneous connectivity. To this end, new performance metrics, EIRPλ and EINFλ, are introduced as important benchmarks for transmitter and receiver performance, and their consistency is discussed. We then show that, assuming conventional bandwidth and communication capacity, the communication distance is independent of carrier frequency. Located between radio waves and light in the electromagnetic spectrum, terahertz waves promise to usher in a new era of wireless communications characterized not only by high-speed communication, but also by convenience and efficiency. Improvements in antenna gain, beam focusing, and precise beam steering are essential to its realization. As these technologies advance, the paradigm of wireless communications is expected to be transformed. The synergistic effects of antenna gain enhancement, beam focusing, and steering will not only push high-speed communications to unprecedented levels, but also lay the foundation for a wireless communications landscape defined by unparalleled convenience and efficiency. This paper will discuss a future in which terahertz communications will reshape the contours of wireless communications as the realization of such technological breakthroughs draws near.

  • Color Correction Method Considering Hue Information for Dichromats Open Access

    Shi BAO  Xiaoyan SONG  Xufei ZHUANG  Min LU  Gao LE  

     
    PAPER-Image

      Pubricized:
    2024/04/22
      Vol:
    E107-A No:9
      Page(s):
    1496-1508

    Images with rich color information are an important source of information that people obtain from the objective world. Occasionally, it is difficult for people with red-green color vision deficiencies to obtain color information from color images. We propose a method of color correction for dichromats based on the physiological characteristics of dichromats, considering hue information. First, the hue loss of color pairs under normal color vision was defined, an objective function was constructed on its basis, and the resultant image was obtained by minimizing it. Finally, the effectiveness of the proposed method is verified through comparison tests. Red-green color vision deficient people fail to distinguish between partial red and green colors. When the red and green connecting lines are parallel to the a* axis of CIE L*a*b*, red and green perception defectives cannot distinguish the color pair, but can distinguish the color pair parallel to the b* axis. Therefore, when two colors are parallel to the a* axis, their color correction yields good results. When color correction is performed on a color, the hue loss between the two colors under normal color vision is supplemented with b* so that red-green color vision-deficient individuals can distinguish the color difference between the color pairs. The magnitude of the correction is greatest when the connecting lines of the color pairs are parallel to the a* axis, and no color correction is applied when the connecting lines are parallel to the b* axis. The objective evaluation results show that the method achieves a higher score, indicating that the proposed method can maintain the naturalness of the image while reducing confusing colors.

  • Cloud-Edge-End Collaborative Multi-Service Resource Management for IoT-Based Distribution Grid Open Access

    Feng WANG  Xiangyu WEN  Lisheng LI  Yan WEN  Shidong ZHANG  Yang LIU  

     
    PAPER-Communications Environment and Ethics

      Pubricized:
    2024/05/13
      Vol:
    E107-A No:9
      Page(s):
    1542-1555

    The rapid advancement of cloud-edge-end collaboration offers a feasible solution to realize low-delay and low-energy-consumption data processing for internet of things (IoT)-based smart distribution grid. The major concern of cloud-edge-end collaboration lies on resource management. However, the joint optimization of heterogeneous resources involves multiple timescales, and the optimization decisions of different timescales are intertwined. In addition, burst electromagnetic interference will affect the channel environment of the distribution grid, leading to inaccuracies in optimization decisions, which can result in negative influences such as slow convergence and strong fluctuations. Hence, we propose a cloud-edge-end collaborative multi-timescale multi-service resource management algorithm. Large-timescale device scheduling is optimized by sliding window pricing matching, which enables accurate matching estimation and effective conflict elimination. Small-timescale compression level selection and power control are jointly optimized by disturbance-robust upper confidence bound (UCB), which perceives the presence of electromagnetic interference and adjusts exploration tendency for convergence improvement. Simulation outcomes illustrate the excellent performance of the proposed algorithm.

  • Type-Enhanced Ensemble Triple Representation via Triple-Aware Attention for Cross-Lingual Entity Alignment Open Access

    Zhishuo ZHANG  Chengxiang TAN  Xueyan ZHAO  Min YANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/05/22
      Vol:
    E107-D No:9
      Page(s):
    1182-1191

    Entity alignment (EA) is a crucial task for integrating cross-lingual and cross-domain knowledge graphs (KGs), which aims to discover entities referring to the same real-world object from different KGs. Most existing embedding-based methods generate aligning entity representation by mining the relevance of triple elements, paying little attention to triple indivisibility and entity role diversity. In this paper, a novel framework named TTEA - Type-enhanced Ensemble Triple Representation via Triple-aware Attention for Cross-lingual Entity Alignment is proposed to overcome the above shortcomings from the perspective of ensemble triple representation considering triple specificity and diversity features of entity role. Specifically, the ensemble triple representation is derived by regarding relation as information carrier between semantic and type spaces, and hence the noise influence during spatial transformation and information propagation can be smoothly controlled via specificity-aware triple attention. Moreover, the role diversity of triple elements is modeled via triple-aware entity enhancement in TTEA for EA-oriented entity representation. Extensive experiments on three real-world cross-lingual datasets demonstrate that our framework makes comparative results.

  • RAN Slicing with Inter-Cell Interference Control and Link Adaptation for Reliable Wireless Communications Open Access

    Yoshinori TANAKA  Takashi DATEKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E107-B No:7
      Page(s):
    513-528

    Efficient multiplexing of ultra-reliable and low-latency communications (URLLC) and enhanced mobile broadband (eMBB) traffic, as well as ensuring the various reliability requirements of these traffic types in 5G wireless communications, is becoming increasingly important, particularly for vertical services. Interference management techniques, such as coordinated inter-cell scheduling, can enhance reliability in dense cell deployments. However, tight inter-cell coordination necessitates frequent information exchange between cells, which limits implementation. This paper introduces a novel RAN slicing framework based on centralized frequency-domain interference control per slice and link adaptation optimized for URLLC. The proposed framework does not require tight inter-cell coordination but can fulfill the requirements of both the decoding error probability and the delay violation probability of each packet flow. These controls are based on a power-law estimation of the lower tail distribution of a measured data set with a smaller number of discrete samples. As design guidelines, we derived a theoretical minimum radio resource size of a slice to guarantee the delay violation probability requirement. Simulation results demonstrate that the proposed RAN slicing framework can achieve the reliability targets of the URLLC slice while improving the spectrum efficiency of the eMBB slice in a well-balanced manner compared to other evaluated benchmarks.

  • An Adaptively Biased OFDM Based on Hartley Transform for Visible Light Communication Systems Open Access

    Menglong WU  Yongfa XIE  Yongchao SHI  Jianwen ZHANG  Tianao YAO  Wenkai LIU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/20
      Vol:
    E107-A No:6
      Page(s):
    928-931

    Direct-current biased optical orthogonal frequency division multiplexing (DCO-OFDM) converts bipolar OFDM signals into unipolar non-negative signals by introducing a high DC bias, which satisfies the requirement that the signal transmitted by intensity modulated/direct detection (IM/DD) must be positive. However, the high DC bias results in low power efficiency of DCO-OFDM. An adaptively biased optical OFDM was proposed, which could be designed with different biases according to the signal amplitude to improve power efficiency in this letter. The adaptive bias does not need to be taken off deliberately at the receiver, and the interference caused by the adaptive bias will only be placed on the reserved subcarriers, which will not affect the effective information. Moreover, the proposed OFDM uses Hartley transform instead of Fourier transform used in conventional optical OFDM, which makes this OFDM have low computational complexity and high spectral efficiency. The simulation results show that the normalized optical bit energy to noise power ratio (Eb(opt)/N0) required by the proposed OFDM at the bit error rate (BER) of 10-3 is, on average, 7.5 dB and 3.4 dB lower than that of DCO-OFDM and superimposed asymmetrically clipped optical OFDM (ACO-OFDM), respectively.

  • Overfitting Problem of ANN- and VSTF-Based Nonlinear Equalizers Trained on Repeated Random Bit Sequences Open Access

    Kai IKUTA  Jinya NAKAMURA  Moriya NAKAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E107-B No:4
      Page(s):
    349-356

    In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which were designed to compensate for optical nonlinear waveform distortion in optical fiber communication systems. Linear waveform distortion caused by, e.g., chromatic dispersion (CD) is commonly compensated by linear equalizers using digital signal processing (DSP) in digital coherent receivers. However, mitigation of nonlinear waveform distortion is considered to be one of the next important issues. An ANN-based nonlinear equalizer is one possible candidate for solving this problem. However, the risk of overfitting of ANNs is one obstacle in using the technology in practical applications. We evaluated and compared the overfitting of ANN- and conventional VSTF-based nonlinear equalizers used to compensate for optical nonlinear distortion. The equalizers were trained on repeated random bit sequences (RRBSs), while varying the length of the bit sequences. When the number of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting characteristics were comparable to those of the VSTF. However, when the number of hidden-layer units was 10, which is usually enough to compensate for optical nonlinear distortion, the overfitting was weaker than that of the VSTF. Furthermore, we confirmed that even commonly used finite impulse response (FIR) filters showed overfitting to the RRBS when the length of the RRBS was equal to or shorter than the length of the tapped delay line of the filters. Conversely, when the RRBS used for the training was sufficiently longer than the tapped delay line, the overfitting could be suppressed, even when using an ANN-based nonlinear equalizer with 10 hidden-layer units.

  • Influence of the Gate Voltage or the Base Pair Ratio Modulation on the λ-DNA FET Performance

    Naoto MATSUO  Akira HEYA  Kazushige YAMANA  Koji SUMITOMO  Tetsuo TABEI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2023/08/08
      Vol:
    E107-C No:3
      Page(s):
    76-79

    The influence of the gate voltage or base pair ratio modulation on the λ-DNA FET performance was examined. The result of the gate voltage modulation indicated that the captured electrons in the guanine base of the λ-DNA molecules greatly influenced the Id-Vd characteristics, and that of the base pair ratio modulation indicated that the tendency of the conductivity was partly clarified by considering the activation energy of holes and electrons and the length and numbers of the serial AT or GC sequences over which the holes or electrons jumped. In addition, the influence of the dimensionality of the DNA molecule on the conductivity was discussed theoretically.

  • Information-Theoretic Perspectives for Simulation-Based Security in Multi-Party Computation

    Mitsugu IWAMOTO  

     
    INVITED PAPER-Cryptography and Information Security

      Pubricized:
    2023/12/01
      Vol:
    E107-A No:3
      Page(s):
    360-372

    Information-theoretic security and computational security are fundamental paradigms of security in the theory of cryptography. The two paradigms interact with each other but have shown different progress, which motivates us to explore the intersection between them. In this paper, we focus on Multi-Party Computation (MPC) because the security of MPC is formulated by simulation-based security, which originates from computational security, even if it requires information-theoretic security. We provide several equivalent formalizations of the security of MPC under a semi-honest model from the viewpoints of information theory and statistics. The interpretations of these variants are so natural that they support the other aspects of simulation-based security. Specifically, the variants based on conditional mutual information and sufficient statistics are interesting because security proofs for those variants can be given by information measures and factorization theorem, respectively. To exemplify this, we show several security proofs of BGW (Ben-Or, Goldwasser, Wigderson) protocols, which are basically proved by constructing a simulator.

  • An Adaptive Energy-Efficient Uneven Clustering Routing Protocol for WSNs

    Mingyu LI  Jihang YIN  Yonggang XU  Gang HUA  Nian XU  

     
    PAPER-Network

      Vol:
    E107-B No:2
      Page(s):
    296-308

    Aiming at the problem of “energy hole” caused by random distribution of nodes in large-scale wireless sensor networks (WSNs), this paper proposes an adaptive energy-efficient balanced uneven clustering routing protocol (AEBUC) for WSNs. The competition radius is adaptively adjusted based on the node density and the distance from candidate cluster head (CH) to base station (BS) to achieve scale-controlled adaptive optimal clustering; in candidate CHs, the energy relative density and candidate CH relative density are comprehensively considered to achieve dynamic CH selection. In the inter-cluster communication, based on the principle of energy balance, the relay communication cost function is established and combined with the minimum spanning tree method to realize the optimized inter-cluster multi-hop routing, forming an efficient communication routing tree. The experimental results show that the protocol effectively saves network energy, significantly extends network lifetime, and better solves the “energy hole” problem.

  • CCTSS: The Combination of CNN and Transformer with Shared Sublayer for Detection and Classification

    Aorui GOU  Jingjing LIU  Xiaoxiang CHEN  Xiaoyang ZENG  Yibo FAN  

     
    PAPER-Image

      Pubricized:
    2023/07/06
      Vol:
    E107-A No:1
      Page(s):
    141-156

    Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable performance in detection and classification tasks. Nevertheless, their feature extraction cannot consider both local and global information, so the detection and classification performance can be further improved. In addition, more and more deep learning networks are designed as more and more complex, and the amount of computation and storage space required is also significantly increased. This paper proposes a combination of CNN and transformer, and designs a local feature enhancement module and global context modeling module to enhance the cascade network. While the local feature enhancement module increases the range of feature extraction, the global context modeling is used to capture the feature maps' global information. To decrease the model complexity, a shared sublayer is designed to realize the sharing of weight parameters between the adjacent convolutional layers or cross convolutional layers, thereby reducing the number of convolutional weight parameters. Moreover, to effectively improve the detection performance of neural networks without increasing network parameters, the optimal transport assignment approach is proposed to resolve the problem of label assignment. The classification loss and regression loss are the summations of the cost between the demander and supplier. The experiment results demonstrate that the proposed Combination of CNN and Transformer with Shared Sublayer (CCTSS) performs better than the state-of-the-art methods in various datasets and applications.

  • A Simple Design of Reconfigurable Intelligent Surface-Assisted Index Modulation: Generalized Reflected Phase Modulation

    Chaorong ZHANG  Yuyang PENG  Ming YUE  Fawaz AL-HAZEMI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/05/30
      Vol:
    E107-A No:1
      Page(s):
    182-186

    As a potential member of next generation wireless communications, the reconfigurable intelligent surface (RIS) can control the reflected elements to adjust the phase of the transmitted signal with less energy consumption. A novel RIS-assisted index modulation scheme is proposed in this paper, which is named the generalized reflected phase modulation (GRPM). In the GRPM, the transmitted bits are mapped into the reflected phase combination which is conveyed through the reflected elements on the RIS, and detected by the maximum likelihood (ML) detector. The performance analysis of the GRPM with the ML detector is presented, in which the closed form expression of pairwise error probability is derived. The simulation results show the bit error rate (BER) performance of GRPM by comparing with various RIS-assisted index modulation schemes in the conditions of various spectral efficiency and number of antennas.

  • D2EcoSys: Decentralized Digital Twin EcoSystem Empower Co-Creation City-Level Digital Twins Open Access

    Kenji KANAI  Hidehiro KANEMITSU  Taku YAMAZAKI  Shintaro MORI  Aram MINE  Sumiko MIYATA  Hironobu IMAMURA  Hidenori NAKAZATO  

     
    INVITED PAPER

      Pubricized:
    2023/10/26
      Vol:
    E107-B No:1
      Page(s):
    50-62

    A city-level digital twin is a critical enabling technology to construct a smart city that helps improve citizens' living conditions and quality of life. Currently, research and development regarding the digital replica city are pursued worldwide. However, many research projects only focus on creating the 3D city model. A mechanism to involve key players, such as data providers, service providers, and application developers, is essential for constructing the digital replica city and producing various city applications. Based on this motivation, the authors of this paper are pursuing a research project, namely Decentralized Digital Twin EcoSystem (D2EcoSys), to create an ecosystem to advance (and self-grow) the digital replica city regarding time and space directions, city services, and values. This paper introduces an overview of the D2EcoSys project: vision, problem statement, and approach. In addition, the paper discusses the recent research results regarding networking technologies and demonstrates an early testbed built in the Kashiwa-no-ha smart city.

1-20hit(1227hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.