Keyword Search Result

[Keyword] ISP(433hit)

41-60hit(433hit)

  • Pulse Responses from Periodically Arrayed Dispersion Media with an Air Region

    Ryosuke OZAKI  Tsuneki YAMASAKI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E102-C No:6
      Page(s):
    479-486

    In this paper, we propose a new technique for the transient scattering problem of periodically arrayed dispersion media for the TE case by using a combination of the Fourier series expansion method (FSEM) and the fast inversion Laplace transform (FILT) method, and analyze the pulse response for various widths of the dispersion media. As a result, we clarified the influence of the dispersion media with an air region on the resulting waveform.

  • Using Temporal Correlation to Optimize Stereo Matching in Video Sequences

    Ming LI  Li SHI  Xudong CHEN  Sidan DU  Yang LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/03/01
      Vol:
    E102-D No:6
      Page(s):
    1183-1196

    The large computational complexity makes stereo matching a big challenge in real-time application scenario. The problem of stereo matching in a video sequence is slightly different with that in a still image because there exists temporal correlation among video frames. However, no existing method considered temporal consistency of disparity for algorithm acceleration. In this work, we proposed a scheme called the dynamic disparity range (DDR) to optimize matching cost calculation and cost aggregation steps by narrowing disparity searching range, and a scheme called temporal cost aggregation path to optimize the cost aggregation step. Based on the schemes, we proposed the DDR-SGM and the DDR-MCCNN algorithms for the stereo matching in video sequences. Evaluation results showed that the proposed algorithms significantly reduced the computational complexity with only very slight loss of accuracy. We proved that the proposed optimizations for the stereo matching are effective and the temporal consistency in stereo video is highly useful for either improving accuracy or reducing computational complexity.

  • An Effective Use of SDN for Virtual-Link Provisioning in ISP Networks

    Slavica TOMOVIĆ  Igor RADUSINOVIĆ  

     
    PAPER-Network

      Pubricized:
    2018/10/18
      Vol:
    E102-B No:4
      Page(s):
    855-864

    The ability of Software Defined Networking (SDN) to dynamically adjust the network behaviour and to support fine-grained routing policies becomes increasingly attractive beyond the boundaries of Data Centre domains, where SDN has already gained enormous momentum. However, the wider adoption of SDN in ISP (Internet Service Provider) networks is still uncertain due to concerns about the scalability of a centralized traffic management in large-scale environments. This is particularly problematic when ISP offers virtual-link services, which imply a performance guaranteed data transfer between two network points. Our solution is a new approach to virtual-link mapping in SDN-based ISP networks. Within the problem's scope, we address traffic engineering (TE), QoS provisioning and failure recovery issues. In order to decrease the controller load, computational effort, and processing delay, we introduce a function split between online routing and TE. The TE functions are performed periodically, with configurable periodicity. In order to reduce the control overhead, we restrict the traffic optimization problem to load balancing over multiple static tunnels. This allows retention of the traditional MPLS routers in the network core and to achieve fast virtual-link restoration in case of physical-link failures. The online routing and admission control algorithms have been designed with the goal of low complexity, and to minimize Flow-table updates. In our simulation study, we compare the proposed virtual-link mapping solution with the solutions that exploit routing flexibility in fully SDN-enabled networks. We find that the throughput loss due to the use of static traffic tunnels is relatively small, while the control overhead is reduced significantly. A prototype of the proposed SDN control-plane is developed and validated in the Mininet emulator.

  • Fabrication and Evaluation of Integrated Photonic Array-Antenna System for RoF Based Remote Antenna Beam Forming

    Takayoshi HIRASAWA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E102-C No:3
      Page(s):
    235-242

    This paper studies the performance of the quantitative RF power variation in Radio-over-Fiber beam forming system utilizing a phased array-antenna integrating photo-diodes in downlink network for next generation millimeter wave band radio access. Firstly, we described details of fabrication of an integrated photonic array-antenna (IPA), where a 60GHz patch antenna 4×2 array and high-speed photo-diodes were integrated into a substrate. We evaluated RF transmission efficiency as an IPA system for Radio-over-Fiber (RoF)-based mobile front hall architecture with remote antenna beam forming capability. We clarified the characteristics of discrete and integrated devices such as an intensity modulator (IM), an optical fiber and the IPA and calculated RF power radiated from the IPA taking account of the measured data of the devices. Based on the experimental results on RF tone signal transmission by utilizing the IPA, attainable transmission distance of wireless communication by improvement and optimization of the used devices was discussed. We deduced that the antenna could output sufficient power when we consider that the cell size of the future mobile communication systems would be around 100 meters or smaller.

  • Influence of Polarity of Polarization Charge Induced by Spontaneous Orientation of Polar Molecules on Electron Injection in Organic Semiconductor Devices

    Yuya TANAKA  Takahiro MAKINO  Hisao ISHII  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    172-175

    On surfaces of tris-(8-hydroxyquinolate) aluminum (Alq) and tris(7-propyl-8-hydroxyquinolinato) aluminum (Al7p) thin-films, positive and negative polarization charges appear, respectively, owing to spontaneous orientation of these polar molecules. Alq is a typical electron transport material where electrons are injected from cathode. Because the polarization charge exists at the Alq/cathode interface, it is likely that it affects the electron injection process because of Coulomb interaction. In order to evaluate an impact of polarization charge on electron injection from cathode, electron only devices (EODs) composed of Alq or Al7p were prepared and evaluated by displacement current measurement. We found that Alq-EOD has lower resistance than Al7p-EOD, indicating that the positive polarization charge at Alq/cathode interface enhances the electron injection due to Coulomb attraction, while the electron injection is suppressed by the negative polarization charge at the Al7p/Al interface. These results clearly suggest that it is necessary to design organic semiconductor devices by taking polarization charge into account.

  • A Comparison Study on Front- and Back-of-Device Touch Input for Handheld Displays

    Liang CHEN  Dongyi CHEN  Xiao CHEN  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    880-883

    Touch screen has become the mainstream manipulation technique on handheld devices. However, its innate limitations, e.g. the occlusion problem and fat finger problem, lower user experience in many use scenarios on handheld displays. Back-of-device interaction, which makes use of input units on the rear of a device for interaction, is one of the most promising approaches to address the above problems. In this paper, we present the findings of a user study in which we explored users' pointing performances in using two types of touch input on handheld devices. The results indicate that front-of-device touch input is averagely about two times as fast as back-of-device touch input but with higher error rates especially in acquiring the narrower targets. Based on the results of our study, we argue that in the premise of keeping the functionalities and layouts of current mainstream user interfaces back-of-device touch input should be treated as a supplement to front-of-device touch input rather than a replacement.

  • Optimization of Flashing Period for Line Display Using Saccade Eyeball Movement Open Access

    Kousuke KANAZAWA  Shota KAZUNO  Makiko OKUMURA  

     
    INVITED PAPER

      Vol:
    E101-C No:11
      Page(s):
    851-856

    In this paper, we developed saccade-induced line displays including flashing period controllers. The displays speeded up the flashing period of one line using LED drivers and Arduino Uno equipped with AVR microcomputers. It was shown that saccades were easily induced when the observer alternately looks at the two fast flashing line displays apart. Also, we were able to find the optimum flashing period using a controller that can speed up the flashing period and change its speed. We found that the relationship between the viewing angle of the observer and the optimum flashing period is almost proportional.

  • Polymer Distribution Control of Polymer-Dispersed Liquid Crystals by Uni-Directionally Diffused UV Irradiation Process Open Access

    Yuya HORII  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    INVITED PAPER

      Vol:
    E101-C No:11
      Page(s):
    857-862

    Recently, a control technique of light distribution pattern has become important to improve the functionality and the light utilization efficiency of electronic displays, illumination devices and so on. As a light control technique, polymer-dispersed liquid crystals (PDLCs) have been commonly used so far. However, a precise control of the light diffusion distribution of conventional PDLC has been difficult due to the random polymer network structure, which results in the low light utilization efficiency. On the other hand, reverse-mode PDLCs with homogeneously aligned molecules can anisotropically diffuse light. The reverse-mode PDLC, however, has polarization dependency in the haze value due to homogeneously aligned molecules, which also results in the low light utilization efficiency. Therefore, it is necessary to establish the optimization method of light diffusion distribution without the molecules alignment treatment, and we have proposed a novel PDLC with structure-controlled polymer network which was fabricated by the irradiation with uni-directionally diffused UV light. In this paper, we investigated the effect of the process temperature during UV irradiation on the internal structure and light diffusion distribution of the proposed PDLC. As a result, in case that the mixture during UV irradiation was in isotropic phase, we clarified that the structure-controlled PDLCs with alternating striped LCs/polymer pattern could be obtained because the mixture was sufficiently irradiated with uni-directionally diffused UV light. For the high haze, this structure-controlled PDLC should be fabricated as low temperature as possible with maintaining the mixture in isotropic phase so that the mixture was not a nano-scaled molecular mixing state. Also, this PDLC had no polarization dependency in the haze value and could electrically switch the light distribution pattern between anisotropic light diffusion and light transmission. From the above results, we concluded that the proposed PDLC could precisely control the light diffusion distribution, and realize the high light utilization efficiency.

  • Wireless Sensor Chip Platform Using On-Chip Electrochromic Micro Display

    Takashiro TSUKAMOTO  Yanjun ZHU  Shuji TANAKA  

     
    INVITED PAPER

      Vol:
    E101-C No:11
      Page(s):
    870-873

    In this paper, a proof-of-concept sensor platform for an all-in-one wireless bio sensor chip was developed and evaluated. An on-chip battery, an on-chip electrochromic display (ECD), a micro processor, a voltage converter and analog switches were implemented on a printed circuit board. Instead of bio-sensor, a temperature sensor was used to evaluate the functionality of the platform. The platform successfully worked in an electrolyte and the encoded measurement result was displayed on the ECD. The displayed data was captured by a CMOS digital camera and the measured data could be successfully decoded by a computer program.

  • Axis-Symmetric Twisted-Vertical Alignment-Mode Using Mortar-Shaped Structure for High-Contrast Reflective LCDs with Fast Response

    Yutaro KUGE  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    892-896

    We have proposed a mortar-shaped structure to improve response time and alignment uniformity of twisted vertically aligned (TVA) mode liquid crystal displays (LCDs) for high-contrast reflective color LCDs. From the results of the simulation, we clarified that response time, alignment uniformity and viewing angle range of TVA-mode LCDs were improved by controlling the liquid crystal alignment axis-symmetrically in each pixel.

  • Electro-Optical Characteristics and Curvature Resistance of Dye-Doped Liquid Crystal Gel Films for Stretchable Displays

    Ryosuke SAITO  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    901-905

    In this study, we evaluated the electro-optical characteristics and structural stability in curved state of dye-doped liquid crystal (LC) gel film for stretchable displays. As the results, maximum contrast ratio of 6.7:1 and suppression of LC flow were achieved by optimum of blend condition such as gelator and dye concentration.

  • Chirp Control of Semiconductor Laser by Using Hybrid Modulation Open Access

    Mitsunari KANNO  Shigeru MIEDA  Nobuhide YOKOTA  Wataru KOBAYASHI  Hiroshi YASAKA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    561-565

    Frequency chirp of a semiconductor laser is controlled by using hybrid modulation, which simultaneously modulates intra-cavity loss and injection current to the laser. The positive adiabatic chirp of injection-current modulation is compensated with the negative adiabatic chirp created by intra-cavity-loss modulation, which enhances the chromatic-dispersion tolerance of the laser. A proof-of-concept transmission experiment confirmed that the hybrid modulation laser has a larger dispersion tolerance than conventional directly modulated lasers due to the negative frequency chirp originating from intra-cavity-loss modulation.

  • IF-over-Fiber Technology Aiming at Efficient Bandwidth Utilization and Perfect Centralized Control for Next-Generation Mobile Fronthaul Links in C-RAN Architectures Open Access

    Shota ISHIMURA  Byung-Gon KIM  Kazuki TANAKA  Shinobu NANBA  Kosuke NISHIMURA  Hoon KIM  Yun C. CHUNG  Masatoshi SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2017/10/18
      Vol:
    E101-B No:4
      Page(s):
    952-960

    The intermediate frequency-over-fiber (IFoF) technology has attracted attention as an alternative transmission scheme to the functional split for the next-generation mobile fronthaul links due to its high spectral efficiency and perfect centralized control ability. In this paper, we discuss and clarify network architectures suited for IFoF, based on its advantages over the functional split. One of the major problems for IFoF transmission is dispersion-induced RF power fading, which limits capacity and transmission distance. We introduce our previous work, in which high-capacity and long-distance IFoF transmission was demonstrated by utilizing a parallel intensity/phase modulators (IM/PM) transmitter which can effectively avoid the fading. The IFoF technology with the proposed scheme is well suited for the long-distance mobile fronthaul links for the 5th generation (5G) mobile system and beyond.

  • Simplified Vehicle Vibration Modeling for Image Sensor Communication

    Masayuki KINOSHITA  Takaya YAMAZATO  Hiraku OKADA  Toshiaki FUJII  Shintaro ARAI  Tomohiro YENDO  Koji KAMAKURA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    176-184

    Image sensor communication (ISC), derived from visible light communication (VLC) is an attractive solution for outdoor mobile environments, particularly for intelligent transport systems (ITS). In ITS-ISC, tracking a transmitter in the image plane is critical issue since vehicle vibrations make it difficult to selsct the correct pixels for data reception. Our goal in this study is to develop a precise tracking method. To accomplish this, vehicle vibration modeling and its parameters estimation, i.e., represetative frequencies and their amplitudes for inherent vehicle vibration, and the variance of the Gaussian random process represnting road surface irregularity, are required. In this paper, we measured actual vehicle vibration in a driving situation and determined parameters based on the frequency characteristics. Then, we demonstrate that vehicle vibration that induces transmitter displacement in an image plane can be modeled by only Gaussian random processes that represent road surface irregularity when a high frame rate (e.g., 1000fps) image sensor is used as an ISC receiver. The simplified vehicle vibration model and its parameters are evaluated by numerical analysis and experimental measurement and obtained result shows that the proposed model can reproduce the characteristics of the transmitter displacement sufficiently.

  • Simulation of Reconstructed Holographic Images Considering Optical Phase Distribution in Small Liquid Crystal Pixels

    Yoshitomo ISOMAE  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E100-C No:11
      Page(s):
    1043-1046

    We proposed the simulation method of reconstructed holographic images in considering phase distribution in the small pixels of liquid crystal spatial light modulator (LC-SLM) and clarified zero-order diffraction appeared on the reconstructed images when the phase distribution in a single pixel is non-uniform. These results are useful for design of fine LC-SLM for realizing wide-viewing-angle holographic displays.

  • Foldable Liquid Crystal Devices Using Ultra-Thin Polyimide Substrates and Bonding Polymer Spacers

    Yuusuke OBONAI  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E100-C No:11
      Page(s):
    1039-1042

    We developed flexible liquid crystal devices using ultra-thin polyimide substrates and bonding polymer spacers, and discussed the effects of polymer spacer structure on the cell thickness uniformity of flexible LCDs. We clarified that the lattice-shaped polymer spacer is effective to stabilize the cell thickness by suppressing the flow of the liquid crystal during bending process.

  • Study on Compact Head-Mounted Display System Using Electro-Holography for Augmented Reality Open Access

    Eishin MURAKAMI  Yuki OGURO  Yuji SAKAMOTO  

     
    INVITED PAPER

      Vol:
    E100-C No:11
      Page(s):
    965-971

    Head-mounted displays (HMDs) and augmented reality (AR) are actively being studied. However, ordinary AR HMDs for visual assistance have a problem in which users have difficulty simultaneously focusing their eyes on both the real target object and the displayed image because the image can only be displayed at a fixed distance from an user's eyes in contrast to where the real object three-dimensionally exists. Therefore, we considered incorporating a holographic technology, an ideal three-dimensional (3D) display technology, into an AR HMD system. A few studies on holographic HMDs have had technical problems, and they have faults in size and weight. This paper proposes a compact holographic AR HMD system with the purpose of enabling an ideal 3D AR HMD system which can correctly reconstruct the image at any depth. In this paper, a Fourier transform optical system (FTOS) was implemented using only one lens in order to achieve a compact and lightweight structure, and a compact holographic AR HMD system was constructed. The experimental results showed that the proposed system can reconstruct sharp images at the correct depth for a wide depth range. This study enabled an ideal 3D AR HMD system that enables simultaneous viewing of both the real target object and the reconstructed image without feeling visual fatigue.

  • Evaluation of Phase Retardation of Curved Thin Polycarbonate Substrates for Wide-viewing Angle Flexible Liquid Crystal Displays Open Access

    Shuichi HONDA  Takahiro ISHINABE  Yosei SHIBATA  Hideo FUJIKAKE  

     
    INVITED PAPER

      Vol:
    E100-C No:11
      Page(s):
    992-997

    We investigated the effects of a bending stress on the change in phase retardation of curved polycarbonate substrates and optical characteristics of flexible liquid crystal displays (LCDs). We clarified that the change in phase retardation was extremely small even for the substrates with a small radius of curvature, because bending stresses occurred in the inner and upper surfaces are canceled each other out. We compensated for the phase retardation of polycarbonate substrates by a positive C-plate and successfully suppressed light leakage in both non-curved and curved states. These results indicate the feasibility of high-quality flexible LCDs using polycarbonate substrates even in curved states.

  • Generating Questions for Inquiry-Based Learning of History in Elementary Schools by Using Stereoscopic 3D Images Open Access

    Takashi SHIBATA  Kazunori SATO  Ryohei IKEJIRI  

     
    INVITED PAPER

      Vol:
    E100-C No:11
      Page(s):
    1012-1020

    We conducted experimental classes in an elementary school to examine how the advantages of using stereoscopic 3D images could be applied in education. More specifically, we selected a unit of the Tumulus period in Japan for sixth-graders as the source of our 3D educational materials. This unit represents part of the coursework for the topic of Japanese history. The educational materials used in our study included stereoscopic 3D images for examining the stone chambers and Haniwa (i.e., terracotta clay figures) of the Tumulus period. The results of our experimental class showed that 3D educational materials helped students focus on specific parts in images such as attached objects of the Haniwa and also understand 3D spaces and concavo-convex shapes. The experimental class revealed that 3D educational materials also helped students come up with novel questions regarding attached objects of the Haniwa, and Haniwa's spatial balance and spatial alignment. The results suggest that the educational use of stereoscopic 3D images is worthwhile in that they lead to question and hypothesis generation and an inquiry-based learning approach to history.

  • Power Reduction of OLED Displays by Tone Mapping Based on Helmholtz-Kohlrausch Effect

    Tomokazu SHIGA  Soshi KITAHARA  

     
    PAPER

      Vol:
    E100-C No:11
      Page(s):
    1026-1030

    The Helmholtz-Kohlraush effect is a visual characteristic that humans perceive color having higher saturation as brighter. In the proposed method, the pixel value is reduced by increasing the saturation while maintaining the hue and value of HSV color space, resulting in power saving of OLED displays since the power consumption of OLED displays directly depends on the pixel value. Although the luminance decreases, brightness of image is maintained by the Helmholtz-Kohlraush effect. In order to suppress excessive increase of saturation, the increase factor of saturation is reduced with an increase in brightness. As maximum increase factor of saturation, kMAX, increases, more power is reduced but unpleasant color change takes place. From the subjective evaluation experiment with the 23 test images consisting of skin, natural and non-natural images, it is found that kMAX is less than 2.0 to suppress the unpleasant color change. When kMAX is 2.0, the power saving is 8.0%. The effectiveness of the proposed technique is confirmed by using a smart phone having 4.5 inches diagonal RGB AMOLED display.

41-60hit(433hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.