Keyword Search Result

[Keyword] ISP(433hit)

221-240hit(433hit)

  • A Multi-Projector Display System with Virtual Camera Method for Distortion Correction on Quadric Surface Screens

    Masato OGATA  Hiroyuki WADA  Kagenori KAJIHARA  Jeroen van BAAR  

     
    PAPER-Computer Graphics

      Vol:
    E89-D No:2
      Page(s):
    814-824

    Multi-projector technology has been under consideration in recent years. This technology allows the generation of wide field of view and high-resolution images in a cost-effective manner. It is expected to be applied extensively to training simulators where vivid immersive sensations and precision are required. However, in many systems the viewing frustums cannot be automatically assigned for distributed rendering, and the required manual setup is complicated and difficult. This is because the camera should be coincide exactly with a desired eye point to avoid perspective distortions. For the actual applications, the camera is seldom able to be set up at the desired eye point because of physical constraints, e.g., a narrow cockpit with many instruments. To resolve this issue, we have developed a "virtual camera method" that yields high-precision calibration regardless of the camera position. This method takes advantage of the quadratic nature of the display surface. We developed a practical real-time multi-projector display system for applications such as training simulators, that require high-accuracy in geometry and rapid response time.

  • Recursive Computation of Wiener-Khintchine Theorem and Bispectrum

    Khalid Mahmood AAMIR  Mohammad Ali MAUD  Arif ZAMAN  Asim LOAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E89-A No:1
      Page(s):
    321-323

    Power Spectral Density (PSD) computed by taking the Fourier transform of auto-correlation functions (Wiener-Khintchine Theorem) gives better result, in case of noisy data, as compared to the Periodogram approach in case the signal is Gaussian. However, the computational complexity of Wiener-Khintchine approach is more than that of the Periodogram approach. For the computation of short time Fourier transform (STFT), this problem becomes even more prominent where computation of PSD is required after every shift in the window under analysis. This paper presents a recursive form of PSD to reduce the complexity. If the signal is not Gaussian, the PSD approach is insufficient and we estimate the higher order spectra of the signal. Estimation of higher order spectra is even more time consuming. In this paper, recursive versions for computation of bispectrum has been presented as well. The computational complexity of PSD and bispectrum for a window size of N, are O(N) and O(N2) respectively.

  • Stereo Matching Algorithm Using a Simplified Trellis Diagram Iteratively and Bi-Directionally

    Tran Thai SON  Seiichi MITA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E89-D No:1
      Page(s):
    314-325

    This paper presents an approach that uses the Viterbi algorithm in a stereo correspondence problem. We propose a matching process which is visualized as a trellis diagram to find the maximum a posterior result. The matching process is divided into two parts: matching the left scene to the right scene and matching the right scene to the left scene. The last result of stereo problem is selected based on the minimum error for uniqueness by a comparison between the results of the two parts of matching process. This makes the stereo matching possible without explicitly detecting occlusions. Moreover, this stereo matching algorithm can improve the accuracy of the disparity image, and it has an acceptable running time for practical applications since it uses a trellis diagram iteratively and bi-directionally. The complexity of our proposed method is shown approximately as O(N2P), in which N is the number of disparity, and P is the length of the epipolar line in both the left and right images. Our proposed method has been proved to be robust when applied to well-known samples of stereo images such as random dot, Pentagon, Tsukuba image, etc. It provides a 95.7 percent of accuracy in radius 1 (differing by 1) for the Tsukuba images.

  • Dual-Slope Ramp Reset Waveform to Improve Dark Room Contrast Ratio in AC PDPs

    Heung-Sik TAE  Jae-Kwnag LIM  Byung-Gwon CHO  

     
    LETTER-Electronic Displays

      Vol:
    E88-C No:12
      Page(s):
    2400-2404

    A new dual-slope ramp (DSR) reset waveform is proposed to improve the dark room contrast ratio in AC-PDPs. The proposed reset waveform has two different voltage slopes during a ramp-up period. The first voltage slope lower than the conventional ramp voltage slope plays a role in producing the priming particles under the low background luminance, which is considered to be a kind of pre-reset discharge. On the other hand, the second voltage slope higher than the conventional ramp voltage slope produces a stable reset discharge due to the presence of the priming particles, but gives rise to a slight increase in the background luminance. Thus, a bias voltage is also applied during a part of the second voltage-slope period to adjust the background luminance and address discharge characteristics. As a result, the proposed dual-slope reset waveform can lower the background luminance without causing the discharge instability, thereby improving the high dark room contrast ratio of an AC-PDP without reducing the address voltage margin.

  • Investigation on Brightness Uniformity for the LED Array Display by Using Current-Based Bias Voltage Compensation

    Jian-Long KUO  Tsung-Yu WANG  Jiann-Der LEE  

     
    PAPER

      Vol:
    E88-C No:11
      Page(s):
    2106-2110

    To understand the brightness uniformity for the driver of the LED array display, automatic electronic measurement equipment and its testing scheme will be proposed in this paper. The driving performance and dynamic characteristics will be investigated by using the proposed current-based bias voltage regulator. A complete testing procedure will be provided to assess the performance for the LED array display driver.

  • Characteristics of a Chromatic Dispersion Measurement Method Using the Bidirectional Modulation of Optical Intensity Modulator

    Keum-Soo JEON  Young-Seok WANG  Sang-Chul MOON  Jae-Kyung PAN  

     
    LETTER-Measurement Technology

      Vol:
    E88-A No:11
      Page(s):
    3260-3263

    We had recently measured a chromatic dispersion of optical fiber and a time delay of chirped fiber grating based on a bidirectional modulation of an optical intensity modulator. In this paper, we analyze characteristics of the chromatic dispersion measurement method using a bidirectional modulation of an optical intensity modulator, and give a detailed explanation about the selection of measurement setup parameters to achieve an accurate measurement. We also propose a modified measurement system to decrease relative intensity noise caused by the bidirectional transmission through a device under test.

  • An LCD Backlight-Module Driver Using a New Multi-Lamp Current Sharing Technique

    Chang-Hua LIN  John Yanhao CHEN  Fuhliang WEN  

     
    PAPER

      Vol:
    E88-C No:11
      Page(s):
    2111-2117

    This paper proposes a backlight module which drives multiple cold-cathode fluorescent lamps (CCFLs) with a current mirror technique to equalize the driving current for each lamp. We first adopt a half-bridge parallel-resonant inverter as the main circuit and use a single-input, multiple-output transformer to drive the multi-CCFLs. Next, we introduce current-mirror circuits to create a new current-sharing circuit, in which its current reference node and the parallel-connected multi-load nodes are used to accurately equalize all CCFLs' driving current. This will balance each lamp's brightness and, consequently, improve the picture display quality of the related liquid crystal display (LCD). This paper details the design concept for each component value with the assistance of an actual design example. The results of the example are examined with its actual measurements, which consequently verify the correctness of the proposed control strategy.

  • Demonstration of 10 Gbit/s-Based Time-Spreading and Wavelength-Hopping Optical-Code-Division-Multiplexing Using Fiber-Bragg-Grating En/Decoder

    Naoki MINATO  Hideaki TAMAI  Hideyuki IWAMURA  Satoko KUTSUZAWA  Shuko KOBAYASHI  Kensuke SASAKI  Akihiko NISHIKI  

     
    PAPER

      Vol:
    E88-B No:10
      Page(s):
    3848-3854

    We studied 10 Gbit/s-based time-spreading and wave-length-hopping (TS-WH) optical code division multiplexing (OCDM) using fiber Bragg gratings (FBGs). To apply it to such the high bit rate system more than ten gigabit, two techniques are adopted. One is encoding with the maximum spreading time of 400 ps, which is four times as data bit duration, to encode without shortening chip duration. Another is encoder design. The apodized refractive index profile to the unit-gratings composing the encoder is designed to encode the pulses with 10-20 ps width at 10 Gbit/s rate. Using these techniques, 210 Gbit/s OCDM is demonstrated successfully. In this scheme, transmission distance is limited due to dispersion effect because the signal has wide bandwidth to assign a wavelength-hopping pattern. We use no additional devices to compensate the dispersion, in order to construct simple and cost-effective system. Novel FBG encoder is designed to incorporate both encoding and compensating of group delay among chip pulses within one device. We confirm the extension of transmission distance in the TS-WH OCDM from the demonstration over 40 km-long single mode fiber.

  • A Millimeter Wave Filter Using the Whispering-Gallery Mode Dielectric Resonators Coupled Laterally

    Yosuke SATO  Yoshinori KOGAMI  

     
    PAPER-Resonators & Filters

      Vol:
    E88-C No:7
      Page(s):
    1440-1447

    A millimeter wave BPF constructed from the WG mode dielectric disk resonators is presented. The design chart for the high Q WG mode resonator is obtained from Qu calculation of some WG modes. By using the design chart, high Q WG mode resonator having no influence of unwanted higher order resonances is designed. Designed resonators have different diameter and various Resonance Frequency Separation respectively. A 3 stage maximally flat BPF is constructed so that each resonator may be coupled laterally on the edge of the disk. Designed center frequency is 62.47 GHz and 3 dB bandwidth is 100 MHz. As a result, this BPF has insertion loss of 1.5 dB and some spurious responses which were existed conventional WG mode BPF are reduced considerably.

  • Background-Adjusted Weber-Fechner Fraction Considering Crispening Effect

    Dong-Ha LEE  Chan-Ho HAN  Kyu-Ik SOHNG  

     
    LETTER

      Vol:
    E88-A No:6
      Page(s):
    1529-1532

    The recognition limit of luminance difference in the human visual system (HVS) has not been studied systematically. In this paper, surround adapted Weber-Fechner fraction is calculated based on the crispening effect. It is found that surround adapted fractions have reduced to 1/3 of the traditional Weber-Fechner fractions. As compared with Breitmeyer's experiments, the presented result is a reasonable one. It can be used as some guide to design the digital display system when a designer needs to decide bit count of digital signal in considering of the limit of brightness level, and as the inspection tool of display manufacturing of brightness smear, defect, and so on.

  • A 24-Gsps 3-Bit Nyquist ADC Using InP HBTs for DSP-Based Electronic Dispersion Compensation

    Hideyuki NOSAKA  Makoto NAKAMURA  Kimikazu SANO  Minoru IDA  Kenji KURISHIMA  Tsugumichi SHIBATA  Masami TOKUMITSU  Masahiro MURAGUCHI  

     
    PAPER-Optical

      Vol:
    E88-C No:6
      Page(s):
    1225-1232

    A 3-bit flash analog-to-digital converter (ADC) for electronic dispersion compensation (EDC) was developed using InP HBTs. Nyquist operation was confirmed up to 24 Gsps, which enables oversampling acquisition for 10 Gbit/s non-return-to-zero (NRZ) signals. The ADC can also be operated at up to 37 Gsps for low input frequencies. To reduce aperture jitter and achieve a wide band of over 7 GHz, an analog input signal for all pre-amplifiers and a clock signal for all latched comparators are provided as traveling waves through coplanar transmission lines. EDC was demonstrated by capturing a 10-Gbit/s pseudo-random bit stream (PRBS) with the waveform degraded by polarization-mode dispersion (PMD). By using the captured data, we confirmed that a calculation of a transversal filter mitigates PMD.

  • Bi-Soliton under the Influence of Third Order Dispersion in Dispersion-Managed Optical Transmission System

    Xuesong MAO  Akihiro MARUTA  

     
    PAPER-Transmission Systems and Technologies

      Vol:
    E88-B No:5
      Page(s):
    1955-1962

    In this paper, firstly, effects of third order dispersion (TOD) on coupled pulses are analyzed. Then, averaging method is modified and proved to be an effective way for obtaining non-radiative bi-soliton solution of the TOD perturbed nonlinear Schrodinger equation (NLSE), which models a dispersion managed (DM) optical transmission system. Finally, the obtained bi-soliton evolution behavior is studied, and compared with that of uni-soliton. With the increase of average TOD, pulse velocity of bi-soliton largely deviates from that of uni-soliton. Thus, even though TOD cannot be exactly vanished in fabrication, it is suggested to compensate average TOD as low as possible.

  • Implementation of an All-Fiber Variable Optical Delay Line with a Pair of Linearly Chirped Fiber Bragg Gratings

    EunSeo CHOI  Jihoon NA  Gopinath MUDHANA  Seon Young RYU  Byeong Ha LEE  

     
    PAPER-Optical Fibers, Cables and Fiber Devices

      Vol:
    E88-C No:5
      Page(s):
    925-932

    We implemented all-fiber delay line using linearly chirped fiber Bragg gratings (CFBG), which can be applicable for reflectometry or optical coherence tomography (OCT). Compared with the previously reported delay lines, the proposed fiber-based optical delay line has in principle novel advantages such as automatic dispersion cancellations without additional treatment and a gain in optical delay that is dependent on parameters of used CFBGs. Dispersion compensation in optical delay line (ODL), which is the indispensable problem in bulk optics based ODL, is demonstrated in fiber by using two identical but reversely ordered CFBGs. Amplified variable optical delay of around 2.5 mm can be obtained by applying small physical stretching of one of CFBGs in the proposed scheme. The operational principles of the all-fiber variable optical delay line, which are based on the distributed reflection characteristic of a CFBG employed, are described. Especially properties such as in-line automatic dispersion cancellation and amplified optical delay under strain are dealt. To demonstrate the properties of the proposed scheme, which is theoretical consequences under assumptions, an all-fiber optical delay line have been implemented using fiber optic components such as fiber couplers and fiber circulators. With the implanted ODL, the group delay and amplified optical delay length was measured with/without strain. The wavelength independent group delay measured within reflection bandwidth of the CFBG has proved the property of automatic dispersion cancellations in the proposed fiber delay line. Optical delay length of 2.5 mm was obtained when we apply small physical stretching to the CFBG by 100 µm and this is expressed by the amplification factor of 25. Amplification factor 25, which is less than theoretical value of 34 due to slipping of fiber in the fiber holder, shows that the proposed scheme can provide large optical delay with applying small physical stretching to the CFBG. We measure slide glass thickness to check the performance of the fiber delay line and the good agreement in measured and physical thickness of slide glass (1 mm thick) validates the potential of proposed delay line in the applications of optical reflectometry and OCT. We also discuss the problem and the solution to improve the performance.

  • An Optimal Certificate Dispersal Algorithm for Mobile Ad Hoc Networks

    Hua ZHENG  Shingo OMURA  Jiro UCHIDA  Koichi WADA  

     
    PAPER

      Vol:
    E88-A No:5
      Page(s):
    1258-1266

    In this paper, we focus on the problem that in an ad hoc network, how to send a message securely between two users using the certificate dispersal system. In this system, special data called certificate is issued between two users and these issued certificates are stored among the network. Our final purpose on this certificate dispersal problem is to construct certificate graphs with lower dispersability cost which indicates the average number of certificates stored in each node in an ad hoc network. As our first step, when a certificate graph is given, we construct two efficient certificate dispersal algorithms for strongly connected graphs and directed graphs in this paper. We can show that for a strongly connected graph G =(V, E) and a directed graph H =(V ′, E ′), new upper bounds on dispersability cost on the average number of certificates stored in one node are O(DG +|E|/|V|) and O(pG dmax +|E ′|/|V ′|) respectively, where DG is the diameter of G, dmax is the maximum diameter of strongly connected components of H and pG is the number of strongly connected components of H. Furthermore, we give some new lower bounds for the problem and we also show that our algorithms are optimal for several graph classes.

  • Ultra Low Loss and Long Length Photonic Crystal Fiber

    Katsusuke TAJIMA  Jian ZHOU  

     
    INVITED PAPER

      Vol:
    E88-C No:5
      Page(s):
    870-875

    Photonic crystal fiber (PCF) is a promising candidate for future transmission media due to its unobtainable features in a conventional single-mode fiber. We discuss some important problems to realize a PCF for transmission purpose. We also present recent progress on the PCF as a transmission media.

  • Generalized Variance-Based Markovian Fitting for Self-Similar Traffic Modelling

    Shou-Kuo SHAO  Malla REDDY PERATI  Meng-Guang TSAI  Hen-Wai TSAO  Jingshown WU  

     
    PAPER

      Vol:
    E88-B No:4
      Page(s):
    1493-1502

    Most of the proposed self-similar traffic models are asymptotic in nature. Hence, they are less effective in queueing-based performance evaluation when the buffer sizes are small. In this paper, we propose a short range dependent (SRD) process modelling by a generalized variance-based Markovian fitting to provide effective queueing-based performance measures when buffer sizes are small. The proposed method is to match the variance of the exact second-order self-similar processes. The fitting procedure determines the related parameters in an exact and straightforward way. The resultant traffic model essentially consists of a superposition of several two-state Markov-modulated Poisson processes (MMPPs) with distinct modulating parameters. We present how well the resultant MMPP could emulate the variance of original self-similar traffic in the range of the specified time scale, and could provide more accurate bounds for the queueing-based performance measures, namely tail probability, mean waiting time and loss probability. Numerical results show that both the second-order statistics and queueing-based performance measures when buffer capacity is small are more accurate than that of the variance-based fitting where the modulating parameters of each superposed two-state MMPP are equal. We then investigate the relationship between time scale and the number of superposed two-state MMPPs. We found that when the performance measures pertaining to larger time scales are not better than that of smaller ones, we need to increase the number of superposed two-state MMPPs to maintain the accurate and reliable queueing-based performance measures. We then conclude from the extensive numerical examples that an exact second-order self-similar traffic can be well represented by the proposed model.

  • Spectrum Tuning of Fiber Bragg Gratings by Strain Distributions and Its Applications

    Chee Seong GOH  Sze Yun SET  Kazuro KIKUCHI  

     
    PAPER

      Vol:
    E88-C No:3
      Page(s):
    363-371

    We report tunable optical devices based on fiber Bragg gratings (FBGs), whose filtering characteristics are controlled by strain distributions. These devices include a widely wavelength tunable filter, a tunable group-velocity dispersion (GVD) compensator, a tunable dispersion slope (DS) compensator, and a variable-bandwidth optical add/drop multiplexer (OADM), which will play important roles for next-generation reconfigurable optical networks.

  • A New 3-D Display Method Using 3-D Visual Illusion Produced by Overlapping Two Luminance Division Displays

    Hideaki TAKADA  Shiro SUYAMA  Kenji NAKAZAWA  

     
    PAPER-Electronic Displays

      Vol:
    E88-C No:3
      Page(s):
    445-449

    We are developing a simple three-dimensional (3-D) display method that uses only two transparent images using luminance division displays without any extra equipment. This method can be applied to not only electronic displays but also the printed sheets. The method utilizes a 3-D visual illusion in which two ordinary images with many edges can be perceived as an apparent 3-D image with continuous depth between the two image planes, when two identical images are overlapped from the midpoint of the observer's eyes and their optical-density ratio is changed according to the desired image depths. We can use transparent printed sheets or transparent liquid crystal displays to display two overlapping transparent images using this 3-D display method. Subjective test results show that the perceived depths changed continuously as the optical-density ratio changed. Deviations of the perceived depths from the average for each observer were sufficiently small. The depths perceived by all six observers coincided well.

  • Polarization Mode Dispersion Characteristic of Optical Fiber Ribbons Inserted Tightly into Slots

    Kunihiro TOGE  Kazuo HOGARI  Fumihiko YAMAMOTO  Izumi SANKAWA  

     
    LETTER-Optical Fiber for Communications

      Vol:
    E88-B No:3
      Page(s):
    1253-1255

    This letter describes the polarization mode dispersion (PMD) characteristic of optical fiber ribbons inserted tightly into helical slots. We investigate the mechanism of the birefringence induced in the optical fiber ribbons by lateral stress resulting from tension and bending in the helical slots. We discuss methods for the design of low PMD cables with reduced birefringence by considering coating materials and tensile strain control.

  • Efficient Block-Level Connectivity Verification Algorithms for Embedded Memories

    Jin-Fu LI  

     
    PAPER-Test

      Vol:
    E87-A No:12
      Page(s):
    3185-3192

    A large memory is typically designed with multiple identical memory blocks for reducing delay and power. The circuit verification of individual memory blocks can be effectively handled by the Symbolic Trajectory Evaluation (STE) approach. However, if multiple memory blocks are integrated into a single system, the STE approach cannot verify it economically. This paper introduces algorithms for verifying block-level connectivity of memories. The verification time of a large memory can be reduced drastically by using bottom-up verification scheme. That is, a memory block is first verified thoroughly, and then only the interconnection between memory blocks of the large memory needs to be verified. The proposed verification algorithms require (3n+2(log2n+1)+3log2m) Read/Write operations for a 2nm-bit memory, where n and m are the address width and data width, respectively. Also, the algorithms can verify 100% of the inter-port and intra-port signal misplaced faults of the address, data input, and data output ports.

221-240hit(433hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.