Keyword Search Result

[Keyword] Si(16405hit)

121-140hit(16405hit)

  • Accurate False-Positive Probability of Multiset-Based Demirci-Selçuk Meet-in-the-Middle Attacks Open Access

    Dongjae LEE  Deukjo HONG  Jaechul SUNG  Seokhie HONG  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2024/03/15
      Vol:
    E107-A No:8
      Page(s):
    1212-1228

    In this study, we focus on evaluating the false-positive probability of the Demirci-Selçuk meet-in-the-middle attack, particularly within the context of configuring precomputed tables with multisets. During the attack, the adversary effectively reduces the size of the key space by filtering out the wrong keys, subsequently recovering the master key from the reduced key space. The false-positive probability is defined as the probability that a wrong key will pass through the filtering process. Due to its direct impact on the post-filtering key space size, the false-positive probability is an important factor that influences the complexity and feasibility of the attack. However, despite its significance, the false-positive probability of the multiset-based Demirci-Selçuk meet-in-the-middle attack has not been thoroughly discussed, to the best of our knowledge. We generalize the Demirci-Selçuk meet-in-the-middle attack and present a sophisticated method for accurately calculating the false-positive probability. We validate our methodology through toy experiments, demonstrating its high precision. Additionally, we propose a method to optimize an attack by determining the optimal format of precomputed data, which requires the precise false-positive probability. Applying our approach to previous attacks on AES and ARIA, we have achieved modest improvements. Specifically, we enhance the memory complexity and time complexity of the offline phase of previous attacks on 7-round AES-128/192/256, 7-round ARIA-192/256, and 8-round ARIA-256 by factors ranging from 20.56 to 23. Additionally, we have improved the overall time complexity of attacks on 7-round ARIA-192/256 by factors of 20.13 and 20.42, respectively.

  • RIS-Assisted MIMO OFDM Dual-Function Radar-Communication Based on Mutual Information Optimization Open Access

    Nihad A. A. ELHAG  Liang LIU  Ping WEI  Hongshu LIAO  Lin GAO  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2024/03/15
      Vol:
    E107-A No:8
      Page(s):
    1265-1276

    The concept of dual function radar-communication (DFRC) provides solution to the problem of spectrum scarcity. This paper examines a multiple-input multiple-output (MIMO) DFRC system with the assistance of a reconfigurable intelligent surface (RIS). The system is capable of sensing multiple spatial directions while serving multiple users via orthogonal frequency division multiplexing (OFDM). The objective of this study is to design the radiated waveforms and receive filters utilized by both the radar and users. The mutual information (MI) is used as an objective function, on average transmit power, for multiple targets while adhering to constraints on power leakage in specific directions and maintaining each user’s error rate. To address this problem, we propose an optimal solution based on a computational genetic algorithm (GA) using bisection method. The performance of the solution is demonstrated by numerical examples and it is shown that, our proposed algorithm can achieve optimum MI and the use of RIS with the MIMO DFRC system improving the system performance.

  • Edge Device Verification Techniques for Updated Object Detection AI via Target Object Existence Open Access

    Akira KITAYAMA  Goichi ONO  Hiroaki ITO  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2023/12/20
      Vol:
    E107-A No:8
      Page(s):
    1286-1295

    Edge devices with strict safety and reliability requirements, such as autonomous driving cars, industrial robots, and drones, necessitate software verification on such devices before operation. The human cost and time required for this analysis constitute a barrier in the cycle of software development and updating. In particular, the final verification at the edge device should at least strictly confirm that the updated software is not degraded from the current it. Since the edge device does not have the correct data, it is necessary for a human to judge whether the difference between the updated software and the operating it is due to degradation or improvement. Therefore, this verification is very costly. This paper proposes a novel automated method for efficient verification on edge devices of an object detection AI, which has found practical use in various applications. In the proposed method, a target object existence detector (TOED) (a simple binary classifier) judges whether an object in the recognition target class exists in the region of a prediction difference between the AI’s operating and updated versions. Using the results of this TOED judgement and the predicted difference, an automated verification system for the updated AI was constructed. TOED was designed as a simple binary classifier with four convolutional layers, and the accuracy of object existence judgment was evaluated for the difference between the predictions of the YOLOv5 L and X models using the Cityscapes dataset. The results showed judgement with more than 99.5% accuracy and 8.6% over detection, thus indicating that a verification system adopting this method would be more efficient than simple analysis of the prediction differences.

  • Joint 2D and 3D Semantic Segmentation with Consistent Instance Semantic Open Access

    Yingcai WAN  Lijin FANG  

     
    PAPER-Image

      Pubricized:
    2023/12/15
      Vol:
    E107-A No:8
      Page(s):
    1309-1318

    2D and 3D semantic segmentation play important roles in robotic scene understanding. However, current 3D semantic segmentation heavily relies on 3D point clouds, which are susceptible to factors such as point cloud noise, sparsity, estimation and reconstruction errors, and data imbalance. In this paper, a novel approach is proposed to enhance 3D semantic segmentation by incorporating 2D semantic segmentation from RGB-D sequences. Firstly, the RGB-D pairs are consistently segmented into 2D semantic maps using the tracking pipeline of Simultaneous Localization and Mapping (SLAM). This process effectively propagates object labels from full scans to corresponding labels in partial views with high probability. Subsequently, a novel Semantic Projection (SP) block is introduced, which integrates features extracted from localized 2D fragments across different camera viewpoints into their corresponding 3D semantic features. Lastly, the 3D semantic segmentation network utilizes a combination of 2D-3D fusion features to facilitate a merged semantic segmentation process for both 2D and 3D. Extensive experiments conducted on public datasets demonstrate the effective performance of the proposed 2D-assisted 3D semantic segmentation method.

  • Convolutional Neural Network Based on Regional Features and Dimension Matching for Skin Cancer Classification Open Access

    Zhichao SHA  Ziji MA  Kunlai XIONG  Liangcheng QIN  Xueying WANG  

     
    PAPER-Image

      Vol:
    E107-A No:8
      Page(s):
    1319-1327

    Diagnosis at an early stage is clinically important for the cure of skin cancer. However, since some skin cancers have similar intuitive characteristics, and dermatologists rely on subjective experience to distinguish skin cancer types, the accuracy is often suboptimal. Recently, the introduction of computer methods in the medical field has better assisted physicians to improve the recognition rate but some challenges still exist. In the face of massive dermoscopic image data, residual network (ResNet) is more suitable for learning feature relationships inside big data because of its deeper network depth. Aiming at the deficiency of ResNet, this paper proposes a multi-region feature extraction and raising dimension matching method, which further improves the utilization rate of medical image features. This method firstly extracted rich and diverse features from multiple regions of the feature map, avoiding the deficiency of traditional residual modules repeatedly extracting features in a few fixed regions. Then, the fused features are strengthened by up-dimensioning the branch path information and stacking it with the main path, which solves the problem that the information of two paths is not ideal after fusion due to different dimensionality. The proposed method is experimented on the International Skin Imaging Collaboration (ISIC) Archive dataset, which contains more than 40,000 images. The results of this work on this dataset and other datasets are evaluated to be improved over networks containing traditional residual modules and some popular networks.

  • CyCSNet: Learning Cycle-Consistency of Semantics for Weakly-Supervised Semantic Segmentation Open Access

    Zhikui DUAN  Xinmei YU  Yi DING  

     
    PAPER-Computer Graphics

      Pubricized:
    2023/12/11
      Vol:
    E107-A No:8
      Page(s):
    1328-1337

    Existing weakly-supervised segmentation approaches based on image-level annotations may focus on the most activated region in the image and tend to identify only part of the target object. Intuitively, high-level semantics among objects of the same category in different images could help to recognize corresponding activated regions of the query. In this study, a scheme called Cycle-Consistency of Semantics Network (CyCSNet) is proposed, which can enhance the activation of the potential inactive regions of the target object by utilizing the cycle-consistent semantics from images of the same category in the training set. Moreover, a Dynamic Correlation Feature Selection (DCFS) algorithm is derived to reduce the noise from pixel-wise samples of low relevance for better training. Experiments on the PASCAL VOC 2012 dataset show that the proposed CyCSNet achieves competitive results compared with state-of-the-art weakly-supervised segmentation approaches.

  • A Combination Method for Impedance Extraction of SMD Electronic Components Based on Full-Wave Simulation and De-Embedding Technique Open Access

    Yang XIAO  Zhongyuan ZHOU  Mingjie SHENG  Qi ZHOU  

     
    PAPER-Measurement Technology

      Pubricized:
    2024/02/15
      Vol:
    E107-A No:8
      Page(s):
    1345-1354

    The method of extracting impedance parameters of surface mounted (SMD) electronic components by test is suitable for components with unknown model or material information, but requires consideration of errors caused by non-coaxial and measurement fixtures. In this paper, a fixture for impedance measurement is designed according to the characteristics of passive devices, and the fixture de-embedding method is used to eliminate errors and improve the test accuracy. The method of obtaining S parameters of fixture based on full wave simulation proposed in this paper can provide a thought for obtaining S parameters in de-embedding. Taking a certain patch capacitor as an example, the S parameters for de-embedding were obtained using methods based on full wave simulation, 2×Thru, and ADS simulation, and de-embedding tests were conducted. The results indicate that obtaining the S parameter of the testing fixture based on full wave simulation and conducting de-embedding testing compared to ADS simulation can accurately extract the impedance parameters of SMD electronic components, which provides a reference for the study of electromagnetic interference (EMI) coupling mechanism.

  • Improved Source Localization Method of the Small-Aperture Array Based on the Parasitic Fly’s Coupled Ears and MUSIC-Like Algorithm Open Access

    Hongbo LI  Aijun LIU  Qiang YANG  Zhe LYU  Di YAO  

     
    LETTER-Noise and Vibration

      Pubricized:
    2023/12/08
      Vol:
    E107-A No:8
      Page(s):
    1355-1359

    To improve the direction-of-arrival estimation performance of the small-aperture array, we propose a source localization method inspired by the Ormia fly’s coupled ears and MUSIC-like algorithm. The Ormia can local its host cricket’s sound precisely despite the tremendous incompatibility between the spacing of its ear and the sound wavelength. In this paper, we first implement a biologically inspired coupled system based on the coupled model of the Ormia’s ears and solve its responses by the modal decomposition method. Then, we analyze the effect of the system on the received signals of the array. Research shows that the system amplifies the amplitude ratio and phase difference between the signals, equivalent to creating a virtual array with a larger aperture. Finally, we apply the MUSIC-like algorithm for DOA estimation to suppress the colored noise caused by the system. Numerical results demonstrate that the proposed method can improve the localization precision and resolution of the array.

  • Extraction of Weak Harmonic Target Signal from Ionospheric Noise of High Frequency Surface Wave Radar Open Access

    Xiaolong ZHENG  Bangjie LI  Daqiao ZHANG  Di YAO  Xuguang YANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2024/01/23
      Vol:
    E107-A No:8
      Page(s):
    1360-1363

    High Frequency Surface Wave Radar holds significant potential in sea detection. However, the target signals are often surpassed by substantial sea clutter and ionospheric clutter, making it crucial to address clutter suppression and extract weak target signals amidst the strong noise background.This study proposes a novel method for separating weak harmonic target signals based on local tangent space, leveraging the chaotic feature of ionospheric clutter.The effectiveness of this approach is demonstrated through the analysis of measured data, thereby validating its practicality and potential for real-world applications.

  • Triangle Projection Algorithm in ADMM-LP Decoding of LDPC Codes Open Access

    Yun JIANG  Huiyang LIU  Xiaopeng JIAO  Ji WANG  Qiaoqiao XIA  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2024/03/18
      Vol:
    E107-A No:8
      Page(s):
    1364-1368

    In this letter, a novel projection algorithm is proposed in which projection onto a triangle consisting of the three even-vertices closest to the vector to be projected replaces check polytope projection, achieving the same FER performance as exact projection algorithm in both high-iteration and low-iteration regime. Simulation results show that compared with the sparse affine projection algorithm (SAPA), it can improve the FER performance by 0.2 dB as well as save average number of iterations by 4.3%.

  • Data-Reuse Extended NLMS Algorithm Based on Optimized Time-Varying Step-Size for System Identification Open Access

    Hakan BERCAG  Osman KUKRER  Aykut HOCANIN  

     
    LETTER-Analog Signal Processing

      Pubricized:
    2024/01/11
      Vol:
    E107-A No:8
      Page(s):
    1369-1373

    A new extended normalized least-mean-square (ENLMS) algorithm is proposed. A novel non-linear time-varying step-size (NLTVSS) formula is derived. The convergence rate of ENLMS increases due to NLTVSS as the number of data-reuse L is increased. ENLMS does not involve matrix inversion, and, thus, avoids numerical instability issues.

  • Search for 9-Variable Boolean Functions with the Optimal Algebraic Immunity-Resiliency Trade-Off and High Nonlinearity Open Access

    Yueying LOU  Qichun WANG  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2024/03/28
      Vol:
    E107-A No:8
      Page(s):
    1382-1385

    Boolean functions play an important role in symmetric ciphers. One of important open problems on Boolean functions is determining the maximum possible resiliency order of n-variable Boolean functions with optimal algebraic immunity. In this letter, we search Boolean functions in the rotation symmetric class, and determine the maximum possible resiliency order of 9-variable Boolean functions with optimal algebraic immunity. Moreover, the maximum possible nonlinearity of 9-variable rotation symmetric Boolean functions with optimal algebraic immunity-resiliency trade-off is determined to be 224.

  • Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems Open Access

    Yuling LI  Aihuang GUO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/12/01
      Vol:
    E107-A No:8
      Page(s):
    1413-1416

    Terahertz (THz) ultra-massive multiple-input multiple-output (UM-MIMO) is envisioned as a key enabling technology of 6G wireless communication. In UM-MIMO systems, downlink channel state information (CSI) has to be fed to the base station for beamforming. However, the feedback overhead becomes unacceptable because of the large antenna array. In this letter, the characteristic of CSI is explored from the perspective of data distribution. Based on this characteristic, a novel network named Attention-GRU Net (AGNet) is proposed for CSI feedback. Simulation results show that the proposed AGNet outperforms other advanced methods in the quality of CSI feedback in UM-MIMO systems.

  • Dynamic Hybrid Beamforming-Based HAP Massive MIMO with Statistical CSI Open Access

    Pingping JI  Lingge JIANG  Chen HE  Di HE  Zhuxian LIAN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/12/25
      Vol:
    E107-A No:8
      Page(s):
    1417-1420

    In this letter, we study the dynamic antenna grouping and the hybrid beamforming for high altitude platform (HAP) massive multiple-input multiple-output (MIMO) systems. We first exploit the fact that the ergodic sum rate is only related to statistical channel state information (SCSI) in the large-scale array regime, and then we utilize it to perform the dynamic antenna grouping and design the RF beamformer. By applying the Gershgorin Circle Theorem, the dynamic antenna grouping is realized based on the novel statistical distance metric instead of the value of the instantaneous channels. The RF beamformer is designed according to the singular value decomposition of the statistical correlation matrix according to the obtained dynamic antenna group. Dynamic subarrays mean each RF chain is linked with a dynamic antenna sub-set. The baseband beamformer is derived by utilizing the zero forcing (ZF). Numerical results demonstrate the performance enhancement of our proposed dynamic hybrid precoding (DHP) algorithm.

  • Waveguide Slot Array with Code-Division Multiplexing Function for Single RF Chain Digital Beamforming Open Access

    Narihiro NAKAMOTO  Kazunari KIHIRA  Toru FUKASAWA  Yoshio INASAWA  Naoki SHINOHARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:8
      Page(s):
    541-551

    This study presents a novel waveguide slot array with a code-division multiplexing function for single RF chain digital beamforming. The proposed antenna is comprised of a rectangular metallic waveguide’s bottom part and a multilayer printed circuit board (PCB) with the rectangular waveguide’s top wall and slot apertures. Multiple pairs of two symmetric longitudinal slots are etched on the metal surface of the PCB, and a PIN diode is mounted across each slot. The received signals of each slot pair are multiplexed in a code-division multiplexing fashion by switching the diodes’ bias according to the Walsh Hadamard code, and the original signals are then recovered through a despreading process in the digital domain for digital beamforming. A prototype antenna with eight slot pairs has been fabricated and tested for proof of concept. The measured results show the feasibility of the proposed antenna.

  • Sum Rate Maximization for Multiuser Full-Duplex Wireless Powered Communication Networks Open Access

    Keigo HIRASHIMA  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E107-B No:8
      Page(s):
    564-572

    In this paper, we consider an orthogonal frequency division multiple access (OFDMA)-based multiuser full-duplex wireless powered communication network (FD WPCN) system with beamforming (BF) at an energy transmitter (ET). The ET performs BF to efficiently transmit energy to multiple users while suppressing interference to an information receiver (IR). Multiple users operating in full-duplex mode harvest energy from the signals sent by the ET while simultaneously transmitting information to the IR using the harvested energy. We analytically demonstrate that the FD WPCN is superior to its half-duplex (HD) WPCN counterpart in the high-SNR regime. We propose a transmitter design method that maximizes the sum rate by determining the BF at the ET, power allocation at both the ET and users, and sub-band allocation. Simulation results show the effectiveness of the proposed method.

  • Method for Estimating Scatterer Information from the Response Waveform of a Backward Transient Scattering Field Using TD-SPT Open Access

    Keiji GOTO  Toru KAWANO  Munetoshi IWAKIRI  Tsubasa KAWAKAMI  Kazuki NAKAZAWA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2024/01/23
      Vol:
    E107-C No:8
      Page(s):
    210-222

    This paper proposes a scatterer information estimation method using numerical data for the response waveform of a backward transient scattering field for both E- and H-polarizations when a two-dimensional (2-D) coated metal cylinder is selected as a scatterer. It is assumed that a line source and an observation point are placed at different locations. The four types of scatterer information covered in this paper are the relative permittivity of a surrounding medium, the relative permittivity of a coating medium layer and its thickness, and the radius of a coated metal cylinder. Specifically, a time-domain saddle-point technique (TD-SPT) is used to derive scatterer information estimation formulae from the amplitude intensity ratios (AIRs) of adjacent backward transient scattering field components. The estimates are obtained by substituting the numerical data of the response waveforms of the backward transient scattering field components into the estimation formulae and performing iterative calculations. Furthermore, a minimum thickness of a coating medium layer for which the estimation method is valid is derived, and two kinds of applicable conditions for the estimation method are proposed. The effectiveness of the scatterer information estimation method is verified by comparing the estimates with the set values. The noise tolerance and convergence characteristics of the estimation method and the method of controlling the estimation accuracy are also discussed.

  • On Easily Reconstructable Logic Functions Open Access

    Tsutomu SASAO  

     
    PAPER

      Pubricized:
    2024/04/16
      Vol:
    E107-D No:8
      Page(s):
    913-921

    This paper shows that sum-of-product expression (SOP) minimization produces the generalization ability. We show this in three steps. First, various classes of SOPs are generated. Second, minterms of SOP are randomly selected to generate partially defined functions. And, third, from the partially defined functions, original functions are reconstructed by SOP minimization. We consider Achilles heel functions, majority functions, monotone increasing cascade functions, functions generated from random SOPs, monotone increasing random SOPs, circle functions, and globe functions. As for the generalization ability, the presented method is compared with Naive Bayes, multi-level perceptron, support vector machine, JRIP, J48, and random forest. For these functions, in many cases, only 10% of the input combinations are sufficient to reconstruct more than 90% of the truth tables of the original functions.

  • Functional Decomposition of Symmetric Multiple-Valued Functions and Their Compact Representation in Decision Diagrams Open Access

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:8
      Page(s):
    922-929

    This paper proposes a decomposition method for symmetric multiple-valued functions. It decomposes a given symmetric multiple-valued function into three parts. By using suitable decision diagrams for the three parts, we can represent symmetric multiple-valued functions compactly. By deriving theorems on sizes of the decision diagrams, this paper shows that space complexity of the proposed representation is low. This paper also presents algorithms to construct the decision diagrams for symmetric multiple-valued functions with low time complexity. Experimental results show that the proposed method represents randomly generated symmetric multiple-valued functions more compactly than the conventional representation method using standard multiple-valued decision diagrams. Symmetric multiple-valued functions are a basic class of functions, and thus, their compact representation benefits many applications where they appear.

  • New Bounds for Quick Computation of the Lower Bound on the Gate Count of Toffoli-Based Reversible Logic Circuits Open Access

    Takashi HIRAYAMA  Rin SUZUKI  Katsuhisa YAMANAKA  Yasuaki NISHITANI  

     
    PAPER

      Pubricized:
    2024/05/10
      Vol:
    E107-D No:8
      Page(s):
    940-948

    We present a time-efficient lower bound κ on the number of gates in Toffoli-based reversible circuits that represent a given reversible logic function. For the characteristic vector s of a reversible logic function, κ(s) closely approximates σ-lb(s), which is known as a relatively efficient lower bound in respect of evaluation time and tightness. The primary contribution of this paper is that κ enables fast computation while maintaining a tightness of the lower bound, approximately equal to σ-lb. We prove that the discrepancy between κ(s) and σ-lb(s) is at most one only, by providing upper and lower bounds on σ-lb in terms of κ. Subsequently, we show that κ can be calculated more efficiently than σ-lb. An algorithm for κ(s) with a complexity of 𝓞(n) is presented, where n is the dimension of s. Experimental results comparing κ and σ-lb are also given. The results demonstrate that the two lower bounds are equal for most reversible functions, and that the calculation of κ is significantly faster than σ-lb by several orders of magnitude.

121-140hit(16405hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.