In this study, we consider the data compression with side information available at both the encoder and the decoder. The information source is assigned to a variable-length code that does not have to satisfy the prefix-free constraints. We define several classes of codes whose codeword lengths and error probabilities satisfy worse-case criteria in terms of side-information. As a main result, we investigate the exact first-order asymptotics with second-order bounds scaled as Θ(√n) as blocklength n increases under the regime of nonvanishing error probabilities. To get this result, we also derive its one-shot bounds by employing the cutoff operation.
Kengo HASHIMOTO Ken-ichi IWATA
The class of k-bit delay decodable codes, source codes allowing decoding delay of at most k bits for k≥0, can attain a shorter average codeword length than Huffman codes. This paper discusses the general properties of the class of k-bit delay decodable codes with a finite number of code tables and proves two theorems which enable us to limit the scope of codes to be considered when discussing optimal k-bit delay decodable codes.
Koshi SHIMADA Shota SAITO Toshiyasu MATSUSHIMA
The context tree model has the property that the occurrence probability of symbols is determined from a finite past sequence and is a broader class of sources that includes i.i.d. or Markov sources. This paper proposes a non-stationary source with context tree models that change from interval to interval. The Bayes code for this source requires weighting of the posterior probabilities of the context tree models and change points, so the computational complexity of it usually increases to exponential order. Therefore, the challenge is how to reduce the computational complexity. In this paper, we propose a special class of prior probability distribution of context tree models and change points and develop an efficient Bayes coding algorithm by combining two existing Bayes coding algorithms. The algorithm minimizes the Bayes risk function of the proposed source in this paper, and the computational complexity of the proposed algorithm is polynomial order. We investigate the behavior and performance of the proposed algorithm by conducting experiments.
A channel coding problem with cost constraint for general channels is considered. Verdú and Han derived ϵ-capacity for general channels. Following the same lines of its proof, we can also derive ϵ-capacity with cost constraint. In this paper, we derive a formula for ϵ-capacity with cost constraint allowing overrun. In order to prove this theorem, a new variation of Feinstein's lemma is applied to select codewords satisfying cost constraint and codewords not satisfying cost constraint.
Toru NAKANISHI Atsuki IRIBOSHI Katsunobu IMAI
As one of privacy-enhancing authentications suitable for decentralized environments, ring signatures have intensively been researched. In ring signatures, each user can choose any ad-hoc set of users (specified by public keys) called a ring, and anonymously sign a message as one of the users. However, in applications of anonymous authentications, users may misbehave the service due to the anonymity, and thus a mechanism to exclude the anonymous misbehaving users is required. However, in the existing ring signature scheme, a trusted entity to open the identity of the user is needed, but it is not suitable for the decentralized environments. On the other hand, as another type of anonymous authentications, a decentralized blacklistable anonymous credential system is proposed, where anonymous misbehaving users can be detected and excluded by a blacklist. However, the DL-based instantiation needs O(N) proof size for the ring size N. In the research line of the DL-based ring signatures, an efficient scheme with O(log N) signature size, called DualRing, is proposed. In this paper, we propose a DL-based blacklistable ring signature scheme extended from DualRing, where in addition to the short O(log N) signature size for N, the blacklisting mechanism is realized to exclude misbehaving users. Since the blacklisting mechanism causes additional costs in our scheme, the signature size is O(log N+l), where l is the blacklist size.
In this paper, we introduce a framework of distributed orthogonal approximate message passing for recovering sparse vector based on sensing by multiple nodes. The iterative recovery process consists of local computation at each node, and global computation performed either by a particular node or joint computation on the overall network by exchanging messages. We then propose a method to reduce the communication cost between the nodes while maintaining the recovery performance.
Information-theoretic lower bounds of the Bayes risk have been investigated for a problem of parameter estimation in a Bayesian setting. Previous studies have proven the lower bound of the Bayes risk in a different manner and characterized the lower bound via different quantities such as mutual information, Sibson's α-mutual information, f-divergence, and Csiszár's f-informativity. In this paper, we introduce an inequality called a “meta-bound for lower bounds of the Bayes risk” and show that the previous results can be derived from this inequality.
In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum logarithmic derivative bounds.
Minami SATO Sosuke MINAMOTO Ryuichi SAKAI Yasuyuki MURAKAMI
It is proven that many public-key cryptosystems would be broken by the quantum computer. The knapsack cryptosystem which is based on the subset sum problem has the potential to be a quantum-resistant cryptosystem. Murakami and Kasahara proposed a SOSI trapdoor sequence which is made by combining shifted-odd (SO) and super-increasing (SI) sequence in the modular knapsack cryptosystem. This paper firstly show that the key generation method could not achieve a secure density against the low-density attack. Second, we propose a high-density key generation method and confirmed that the proposed scheme is secure against the low-density attack.
Yuta NAKAHARA Toshiyasu MATSUSHIMA
Previously, we proposed a probabilistic data generation model represented by an unobservable tree and a sequential updating method to calculate a posterior distribution over a set of trees. The set is called a meta-tree. In this paper, we propose a more efficient batch updating method.
We have realized a design automation platform of hardware accelerator for pairing operation over multiple elliptic curve parameters. Pairing operation is one of the fundamental operations to realize functional encryption. However, known as a computational complexity-heavy algorithm. Also because there have been not yet identified standard parameters, we need to choose curve parameters based on the required security level and affordable hardware resources. To explore this design optimization for each curve parameter is essential. In this research, we have realized an automated design platform for pairing hardware for such purposes. Optimization results show almost equivalent to those prior-art designs by hand.
Sohei SHIMOMAI Kei UEDA Shinji KIMURA
Recently, Quantum Annealing (QA) has attracted attention as an efficient algorithm for combinatorial optimization problems. In QA, the input data size becomes large and its reduction is important for accelerating by the hardware emulation since the usable memory size and its bandwidth are limited. The paper proposes the compression method of input sparse matrices for QA emulator. The proposed method uses the sparseness of the coefficient matrix and the reappearance of the same values. An independent table is introduced and data are compressed by the search and registration method of two consecutive data in the value table. The proposed method is applied to Traveling Salesman Problem (TSP) with 32, 64 and 96 cities and Nurse Scheduling Problem (NSP). The proposed method could reduce the amount of data by 1/40 for 96 city TSP and could manage 96 city TSP on the hardware emulator. When applied to NSP, we confirmed the effectiveness of the proposed method by the compression ratio ranging from 1/4 to 1/11.8. The data reduction is also useful for the simulation/emulation performance when using the compressed data directly and 1.9 times faster speed can be found on 96 city TSP than the CSR-based method.
Ryosuke MATSUO Shin-ichi MINATO
Logic circuits based on a photonic integrated circuit (PIC) have attracted significant interest due to their ultra-high-speed operation. However, they have a fundamental disadvantage that a large amount of the optical signal power is discarded in the path from the optical source to the optical output, which results in significant power consumption. This optical signal power loss is called a garbage output. To address this issue, this paper considers a circuit design without garbage outputs. Although a method for synthesizing an optical logic circuit without garbage outputs is proposed, this synthesis method can not obtain the optimal solution, such as a circuit with the minimum number of gates. This paper proposes a cross-bar gate logic (CBGL) as a new logic structure for optical logic circuits without garbage outputs, moreover enumerates the CBGLs with the minimum number of gates for all three input logic functions by an exhaustive search. Since the search space is vast, our enumeration algorithm incorporates a technique to prune it efficiently. Experimental results for all three-input logic functions demonstrate that the maximum number of gates required to implement the target function is five. In the best case, the number of gates in enumerated CBGLs is one-half compared to the existing method for optical logic circuits without garbage outputs.
In this work, template attacks that aimed to leak the nonce were performed on 256-bit ECDSA hardware to evaluate the resistance against side-channel attacks. The target hardware was an ASIC and was revealed to be vulnerable to the combination of template attacks and lattice attacks. Furthermore, the attack result indicated it was not enough to fix the MSB of the nonce to 1 which is a common countermeasure. Also, the success rate of template attacks was estimated by simulation. This estimation does not require actual hardware and enables us to test the security of the implementation in the design phase. To clarify the acceptable amount of the nonce leakage, the computational cost of lattice attacks was compared to that of ρ method which is a cryptanalysis method. As a result, the success rate of 2-bit leakage of the nonce must be under 62% in the case of 256-bit ECDSA. In other words, SNR must be under 2-4 in our simulation model.
Masayoshi YOSHIMURA Atsuya TSUJIKAWA Toshinori HOSOKAWA
In recent years, to meet strict time-to-market constraints, it has become difficult for only one semiconductor design company to design a VLSI. Thus, design companies purchase IP cores from third-party IP vendors and design only the necessary parts. On the other hand, since IP cores have the disadvantage that copyright infringement can be easily performed, logic locking has to be applied to them. Functional logic locking methods using TTLock are resilient to SAT attacks however vulnerable to FALL attacks. Additionally, it is difficult to design logic locking based on TTLock at the gate level. This paper proposes a logic locking method, CRLock, based on SAT attack and FALL attack resistance at the register transfer level. The CRLock is a logic locking method for controllers at RTL in which the designer selects a protected input pattern and modifies the controller based on the protection input pattern. In experimental results, we applied CRLock to MCNC'91 benchmark circuits and showed that all circuits are resistant to SAT and FALL attacks.
Jie LUO Chengwan HE Hongwei LUO
Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.
While deep image compression performs better than traditional codecs like JPEG on natural images, it faces a challenge as a learning-based approach: compression performance drastically decreases for out-of-domain images. To investigate this problem, we introduce a novel task that we call universal deep image compression, which involves compressing images in arbitrary domains, such as natural images, line drawings, and comics. Furthermore, we propose a content-adaptive optimization framework to tackle this task. This framework adapts a pre-trained compression model to each target image during testing for addressing the domain gap between pre-training and testing. For each input image, we insert adapters into the decoder of the model and optimize the latent representation extracted by the encoder and the adapter parameters in terms of rate-distortion, with the adapter parameters transmitted per image. To achieve the evaluation of the proposed universal deep compression, we constructed a benchmark dataset containing uncompressed images of four domains: natural images, line drawings, comics, and vector arts. We compare our proposed method with non-adaptive and existing adaptive compression methods, and the results show that our method outperforms them. Our code and dataset are publicly available at https://github.com/kktsubota/universal-dic.
Representation learning is a crucial and complex task for multivariate time series data analysis, with a wide range of applications including trend analysis, time series data search, and forecasting. In practice, unsupervised learning is strongly preferred owing to sparse labeling. However, most existing studies focus on the representation of individual subseries without considering relationships between different subseries. In certain scenarios, this may lead to downstream task failures. Here, an unsupervised representation learning model is proposed for multivariate time series that considers the semantic relationship among subseries of time series. Specifically, the covariance calculated by the Gaussian process (GP) is introduced to the self-attention mechanism, capturing relationship features of the subseries. Additionally, a novel unsupervised method is designed to learn the representation of multivariate time series. To address the challenges of variable lengths of input subseries, a temporal pyramid pooling (TPP) method is applied to construct input vectors with equal length. The experimental results show that our model has substantial advantages compared with other representation learning models. We conducted experiments on the proposed algorithm and baseline algorithms in two downstream tasks: classification and retrieval. In classification task, the proposed model demonstrated the best performance on seven of ten datasets, achieving an average accuracy of 76%. In retrieval task, the proposed algorithm achieved the best performance under different datasets and hidden sizes. The result of ablation study also demonstrates significance of semantic relationship in multivariate time series representation learning.
Zejing ZHAO Bin ZHANG Hun-ok LIM
In this study, a Coanda-drone with length, width, and height of 121.6, 121.6, and 191[mm] was designed, and its total mass was 1166.7[g]. Using four propulsion devices, it could produce a maximum of 5428[g] thrust. Its structure is very different from conventional drones because in this study it combines the design of the jet engine of a jet fixed-wing drone with the fuselage structure layout of a rotary-wing drone. The advantage of jet drone's high propulsion is kept so that it can output greater thrust under the same variation of PWM waveform output. In this study, the propulsion device performs high-speed jetting, and the airflow around the propulsion device will also be jetted downward along the direction of the airflow.
Yasumasa NAKA Akihiko ISHIWATA Masaya TAMURA
The misalignment of a coupler is a significant issue for capacitive wireless power transfer (WPT). This paper presents a capacitive WPT system specifically designed for underwater drones operating in flowing freshwater environments. The primary design features include a capacitive coupler with an opposite relative position between feeding and receiving points on the coupler electrode, two phase compensation circuits, and a load-independent inverter. A stable and energy-efficient power transmission is achieved by maintaining a 90° phase difference on the coupler electrode in dielectrics with a large unloaded quality factor (Q factor), such as in freshwater. Although a 622-mm coupler electrode is required at 13.56MHz, the phase compensation circuits can reduce to 250mm as one example, which is mountable to small underwater drones. Furthermore, the electricity waste is automatically reduced using the constant-current (CC) output inverter in the event of misalignment where efficiency drops occur. Finally, their functions are simulated and demonstrated at various receiver positions and transfer distances in tap water.