Recent years have seen a general resurgence of interest in analog signal processing and computing architectures. In addition, extensive theoretical and experimental literature on chaos and analog chaotic oscillators exists. One peculiarity of these circuits is the ability to generate, despite their structural simplicity, complex spatiotemporal patterns when several of them are brought towards synchronization via coupling mechanisms. While by no means a systematic survey, this paper provides a personal perspective on this area. After briefly covering design aspects and the synchronization phenomena that can arise, a selection of results exemplifying potential applications is presented, including in robot control, distributed sensing, reservoir computing, and data augmentation. Despite their interesting properties, the industrial applications of these circuits remain largely to be realized, seemingly due to a variety of technical and organizational factors including a paucity of design and optimization techniques. Some reflections are given regarding this situation, the potential relevance to discontinuous innovation in analog circuit design of chaotic oscillators taken both individually and as synchronized networks, and the factors holding back the transition to higher levels of technology readiness.
Existing weakly-supervised segmentation approaches based on image-level annotations may focus on the most activated region in the image and tend to identify only part of the target object. Intuitively, high-level semantics among objects of the same category in different images could help to recognize corresponding activated regions of the query. In this study, a scheme called Cycle-Consistency of Semantics Network (CyCSNet) is proposed, which can enhance the activation of the potential inactive regions of the target object by utilizing the cycle-consistent semantics from images of the same category in the training set. Moreover, a Dynamic Correlation Feature Selection (DCFS) algorithm is derived to reduce the noise from pixel-wise samples of low relevance for better training. Experiments on the PASCAL VOC 2012 dataset show that the proposed CyCSNet achieves competitive results compared with state-of-the-art weakly-supervised segmentation approaches.
This paper develops a design method and theoretical analysis for piecewise nonlinear oscillators that have desired circular limit cycles. Especially, the mathematical proof on existence, uniqueness, and stability of the limit cycle is shown for the piecewise nonlinear oscillator. In addition, the relationship between parameters in the oscillator and rotational directions and periods of the limit cycle trajectories is investigated. Then, some numerical simulations show that the piecewise nonlinear oscillator has a unique and stable limit cycle and the properties on rotational directions and periods hold.
Jeyoen KIM Takumi SOMA Tetsuya MANABE Aya KOJIMA
This paper attempts to identify which side of the road a bicycle is currently riding on using a common camera for realizing an advanced bicycle navigation system and bicycle riding safety support system. To identify the roadway area, the proposed method performs semantic segmentation on a front camera image captured by a bicycle drive recorder or smartphone. If the roadway area extends from the center of the image to the right, the bicyclist is riding on the left side of the roadway (i.e., the correct riding position in Japan). In contrast, if the roadway area extends to the left, the bicyclist is on the right side of the roadway (i.e., the incorrect riding position in Japan). We evaluated the accuracy of the proposed method on various road widths with different traffic volumes using video captured by riding bicycles in Tsuruoka City, Yamagata Prefecture, and Saitama City, Saitama Prefecture, Japan. High accuracy (>80%) was achieved for any combination of the segmentation model, riding side identification method, and experimental conditions. Given these results, we believe that we have realized an effective image segmentation-based method to identify which side of the roadway a bicycle riding is on.
Human skin visualization in the beauty industry with a smart-phone based on deep learning was discussed. Skin was photographed with a medical camera that could simultaneously capture RGB and UV images of the same area. Smartphone RGB images were converted into versions similar to medical RGB and UV images via a deep learning method called cycle-GAN, which was trained with the medical and the smartphone images. After converting the smartphone image into a version similar to a medical RGB image using cycle-GAN, the processed image was also converted into a pseudo-UV image via a deep learning method called U-NET. Hidden age spots were effectively visualized by this image. RGB and UV images similar to medical images can be captured with a smartphone. Provided the neural network on deep learning is trained, a medical camera is not required.
This paper proposes a route calculation method for a bicycle navigation system that complies with traffic regulations. The extension of the node map and three kinds of route calculation methods are constructed and evaluated on the basis of travel times and system acceptability survey results. Our findings reveal the effectiveness of the proposed route calculation method and the acceptability of the bicycle navigation system that included the method.
Sung-Woon JUNG Hyuk-Ju KWON Dong-Min SON Sung-Hak LEE
High dynamic range (HDR) imaging refers to digital image processing that modifies the range of color and contrast to enhance image visibility. To create an HDR image, two or more images that include various information are needed. In order to convert low dynamic range (LDR) images to HDR images, we consider the possibility of using a generative adversarial network (GAN) as an appropriate deep neural network. Deep learning requires a great deal of data in order to build a module, but once the module is created, it is convenient to use. In this paper, we propose a weight map for local luminance based on learning to reconstruct locally tone-mapped images.
Hanan T. Al-AWADHI Tomoki AONO Senling WANG Yoshinobu HIGAMI Hiroshi TAKAHASHI Hiroyuki IWATA Yoichi MAEDA Jun MATSUSHIMA
Multi-cycle Test looks promising a way to reduce the test application time of POST (Power-on Self-Test) for achieving a targeted high fault coverage specified by ISO26262 for testing automotive devices. In this paper, we first analyze the mechanism of Stuck-at Fault Detection Degradation problem in multi-cycle test. Based on the result of our analysis we propose a novel solution named FF-Control Point Insertion technique (FF-CPI) to achieve the reduction of scan-in patterns by multi-cycle test. The FF-CPI technique modifies the captured values of scan Flip-Flops (FFs) during capture operation by directly reversing the value of partial FFs or loading random vectors. The FF-CPI technique enhances the number of detectable stuck-at faults under the capture patterns. The experimental results of ISCAS89 and ITC99 benchmarks validated the effectiveness of FF-CPI technique in scan-in pattern reduction for POST.
Foisal AHMED Michihiro SHINTANI Michiko INOUE
Analyzing aging-induced delay degradations of ring oscillators (ROs) is an effective way to detect recycled field-programmable gate arrays (FPGAs). However, it requires a large number of RO measurements for all FPGAs before shipping, which increases the measurement costs. We propose a cost-efficient recycled FPGA detection method using a statistical performance characterization technique called virtual probe (VP) based on compressed sensing. The VP technique enables the accurate prediction of the spatial process variation of RO frequencies on a die by using a very small number of sample RO measurements. Using the predicted frequency variation as a supervisor, the machine-learning model classifies target FPGAs as either recycled or fresh. Through experiments conducted using 50 commercial FPGAs, we demonstrate that the proposed method achieves 90% cost reduction for RO measurements while preserving the detection accuracy. Furthermore, a one-class support vector machine algorithm was used to classify target FPGAs with around 94% detection accuracy.
The paper deals with the shortest path-based in-trees on a grid graph. There a root is supposed to move among all vertices. As such a spanning mobility pattern, root trajectories based on a Hamilton path or cycle are discussed. Along such a trajectory, each vertex randomly selects the next hop on the shortest path to the root. Under those assumptions, this paper shows that a root trajectory termed an S-path provides the minimum expected symmetric difference. Numerical experiments show that another trajectory termed a Right-cycle also provides the minimum result.
Satoshi MIZUTANI Xufeng ZHAO Toshio NAKAGAWA
When a unit repeats some works over again and undergoes minimal repairs at failures, it is more practical to replace it preventively at the end of working cycles or at its failure times. In this case, it would be an interesting problem to know which is better to replace the unit at a number of working cycles or at random failures from the point of cost. For this purpose, we give models of the expected cost rates for the following replacement policies: (1) The unit is replaced at a working cycle N and at a failure number K, respectively; (2) Replacement first and last policies with working cycle N and failure number K, respectively; (3) Replacement overtime policies with working cycle N and failure number K, respectively. Optimizations and comparisons of the policies for N and K are made analytically and numerically.
In this letter, we investigate the separating redundancy of binary linear codes. Using analytical techniques, we provide a general lower bound on the first separating redundancy of binary linear codes and show the bound is tight for a particular family of binary linear codes, i.e., cycle codes. In other words, the first separating redundancy of cycle codes can be determined. We also derive a deterministic and constructive upper bound on the second separating redundancy of cycle codes, which is shown to be better than the general deterministic and constructive upper bounds for the codes.
Hitoshi TAKESHITA Keiichi MATSUMOTO Hiroshi HASEGAWA Ken-ichi SATO Emmanuel Le Taillandier de GABORY
We realize a multicore erbium-doped fiber amplifier (MC-EDFA) with 2dB optical gain improvement (average) by recycling the residual 0.98μm pump light from the MC-EDF output. Eight-channel per core wavelength division multiplexed (WDM) Nyquist PM-16QAM optical signal amplification is demonstrated over a 40-minute period. Furthermore, we demonstrate the proposed MC-EDFA's stability by using it to amplify a Nyquist PM-16QAM signal and evaluating the resulting Q-factor variation. We found that our scheme contributes to reducing the total power consumption of MC-EDFAs in spatial division multiplexing (SDM)/WDM networks by up to 33.5%.
Yuri USAMI Kazuaki ISHIKAWA Toshinori TAKAYAMA Masao YANAGISAWA Nozomu TOGAWA
It becomes possible to prevent accidents beforehand by predicting dangerous riding behavior based on recognition of bicycle behaviors. In this paper, we propose a bicycle behavior recognition method using a three-axis acceleration sensor and three-axis gyro sensor equipped with a smartphone when it is installed on a bicycle handlebar. We focus on the periodic handlebar motions for balancing while running a bicycle and reduce the sensor noises caused by them. After that, we use machine learning for recognizing the bicycle behaviors, effectively utilizing the motion features in bicycle behavior recognition. The experimental results demonstrate that the proposed method accurately recognizes the four bicycle behaviors of stop, run straight, turn right, and turn left and its F-measure becomes around 0.9. The results indicate that, even if the smartphone is installed on the noisy bicycle handlebar, our proposed method can recognize the bicycle behaviors with almost the same accuracy as the one when a smartphone is installed on a rear axle of a bicycle on which the handlebar motion noises can be much reduced.
Tomoya KAWAKAMI Tomoki YOSHIHISA Yuuichi TERANISHI
In this paper, we propose a method to construct a scalable sensor data stream delivery system that guarantees the specified delivery quality of service (i.e., total reachability to destinations), even when delivery server resources (nodes) are in a heterogeneous churn situation. A number of P2P-based methods have been proposed for constructing a scalable and efficient sensor data stream system that accommodates different delivery cycles by distributing communication loads of the nodes. However, no existing method can guarantee delivery quality of service when the nodes on the system have a heterogeneous churn rate. As an extension of existing methods, which assign relay nodes based on the distributed hashing of the time-to-deliver, our method specifies the number of replication nodes, based on the churn rate of each node and on the relevant delivery paths. Through simulations, we confirmed that our proposed method can guarantee the required reachability, while avoiding any increase in unnecessary resource assignment costs.
Alagu DHEERAJ Rajini VEERARAGHAVALU
Forward converter is most suitable for low voltage and high current applications such as LEDs, battery chargers, EHV etc. The active clamp transformer reset technique offers many advantages over conventional single-ended reset techniques, including lower voltage stress on the main switch, the ability to switch at zero voltage and duty cycle operation above 50 percent. Several papers have compared the functional merits of the active clamp over the more extensively used RCD clamp, third winding and resonant reset techniques. This paper discusses about a center clamp technique with one common core reset circuit making it suitable for wide input voltage applications with extended duty cycle.
We improve the cycle time performance of EtherCAT networks with embedded Linux-based master by developing a Linux Ethernet driver optimized for EtherCAT operation. The Ethernet driver is developed to establish a direct interface between the master module and Ethernet controllers of embedded systems by removing the involvement of Linux network stack and the New API (NAPI) of standard Ethernet drivers. Consequently, it is achieved that the time-consuming memory copy operations are reduced and the process of EtherCAT frames is accelerated. In order to demonstrate the effect of the developed Ethernet driver, we set up EtherCAT networks composed of an embedded Linux-based master and commercial off-the-shelf slaves, and the experimental results confirm that the cycle time performance is significantly improved.
In a multiprocessor system, processors are connected based on various types of network topologies. A network topology is usually represented by a graph. Let G be a graph and u, v be any two distinct vertices of G. We say that G is pancyclic if G has a cycle C of every length l(C) satisfying 3≤l(C)≤|V(G)|, where |V(G)| denotes the total number of vertices in G. Moreover, G is panpositionably pancyclic from r if for any integer m satisfying $r leq m leq rac{|V(G)|}{2}$, G has a cycle C containing u and v such that dC(u,v)=m and 2m≤l(C)≤|V(G)|, where dC(u,v) denotes the distance of u and v in C. In this paper, we investigate the panpositionable pancyclicity problem with respect to the n-dimensional locally twisted cube LTQn, which is a popular topology derived from the hypercube. Let D(LTQn) denote the diameter of LTQn. We show that for n≥4 and for any integer m satisfying $D(LTQ_n) + 2 leq m leq rac{|V(LTQ_n)|}{2}$, there exists a cycle C of LTQn such that dC(u,v)=m, where (i) 2m+1≤l(C)≤|V(LTQn)| if m=D(LTQn)+2 and n is odd, and (ii) 2m≤l(C)≤|V(LTQn)| otherwise. This improves on the recent result that u and v can be positioned with a given distance on C only under the condition that l(C)=|V(LTQn)|. In parallel and distributed computing, if cycles of different lengths can be embedded, we can adjust the number of simulated processors and increase the flexibility of demand. This paper demonstrates that in LTQn, the cycle embedding containing any two distinct vertices with a feasible distance is extremely flexible.
Shyue-Ming TANG Yue-Li WANG Chien-Yi LI Jou-Ming CHANG
Generalized recursive circulant graphs (GRCGs for short) are a generalization of recursive circulant graphs and provide a new type of topology for interconnection networks. A graph of n vertices is said to be s-pancyclic for some $3leqslant sleqslant n$ if it contains cycles of every length t for $sleqslant tleqslant n$. The pancyclicity of recursive circulant graphs was investigated by Araki and Shibata (Inf. Process. Lett. vol.81, no.4, pp.187-190, 2002). In this paper, we are concerned with the s-pancyclicity of GRCGs.
Shun KIMURA Hiroyuki HATANO Masahiro FUJII Atsushi ITO Yu WATANABE Tomoya KITANI
Motorcycles are driven in a road widely but must be driven carefully because they are easily damaged by obstacles, bumps or potholes in the road. Thus, motorcycle trajectories are valuable for detecting road abnormalities. The trajectories are usually obtained from GPS (Global Positioning System). However, errors often occur in GPS positioning. In this research, we will present a detection idea of the GPS error based on behavior estimation of riders. Moreover, we will propose a novel behavior estimation method.