Sung-Bok CHOI Young-Hwan YOU Hyoung-Kyu SONG
Many wireless communication systems use a relay station for cooperative diversity or cell coverage extension. In this letter, an efficient partial single relay selection scheme is proposed for wireless communications. The conventional schemes such as the best harmonic mean and the threshold-based relay selection should know channel state informaion (CSI), or noise variance at all stations in advance. But the proposed scheme does not require any priori information. It uses a characteristic of the repeated signal pattern at candidates of the relay station. Simulation results show that the performance of proposed scheme is very close to the best harmonic mean relay selection scheme as one of the optimal relay selection schemes.
ChaoYi ZHANG YanDong ZHAO DongYang WANG
Multi-antenna relay transport protocols are analysed, the transmitting matrix of relay node can split into a forward and a backward filters, and these two filters are cascade connection. Based on the zero-forcing relaying protocol, a spatial channel mapping matrix is added between these two filters, and a unified framework of spatial channel mapping matrix is proposed. Then, various linear system designs are summarized, the spatial channel mapping matrix is used to reduce destination noise, so that the relaying noise is suppressed in destination node, and the transmitting power of relay is efficiently utilized. Meanwhile, source node preprocessing operation and destination node equalizer are considered. Simulation results show that the spatial channel mapping matrix has an advantage in terms of system outage probability and capacity performance, and the result is consistent with theoretical analysis.
Hyun-Jun SHIN Jung-In BAIK Hyoung-Kyu SONG
In wireless communication, it is hard to set the optimal route between a source and a destination through relays, since for optimal relaying, the system operator should know all channel conditions from a source to a destination through relays and determine the path with all channel conditions. In this letter, a multiple relay selection strategy is proposed for the reliability of transmission. The proposed strategy establishes a relaying route to a destination and provides an efficient relay selection process regardless of all channel conditions.
Takeshi ISHIDA Yukihiro TOZAWA Mutsumu TAKAHASHI Fengchao XIAO Yoshio KAMI Osamu FUJIWARA Shuichi NITTA
Electrostatic discharge (ESD) generators cause electromagnetic (EM) noises not only at ESD tests but also even before and after the tests. This may provide inconsistent test results, but the mechanism has not been well examined. To explain the mechanism qualitatively, we investigated a generation source model of EM noises from an ESD generator in conjunction with the functional control sequences of built-in relay switches and the DC high voltage power supply. To validate this model, we used a magnetic field probe to measure the induced EM noises before, during, and after contact and air discharges in accordance with the corresponding timing of the functional control sequences. As a result, we confirmed that the EM noises are induced when the relay switches operate before and at ESD testing and after ESD tests for both contact and air discharges. In addition, we found that the noise peaks due to contact discharges increase with charge voltages, and the peaks just before and at the testing are relatively larger than the ones after the tests, while the peaks of the induced noises at the air discharge testing do not always increase with charge voltages, but reach a maximum at 3kV. In addition, the peaks of the induced noises at the air discharge testing become smaller than either the peaks just before the testing and those after the tests at charge voltages above 6kV. This suggests that the EM noises just before ESD testing and after the test may cause the EUT to malfunction when air discharge tests with charge voltages over 6kV are conducted. A new control sequence of the built-in relay switch was also proposed for reducing the EM noises after ESD tests, which was validated through noise measurements.
An optimal design method of linear processors intended for a multi-input multi-output (MIMO) full-duplex (FD) amplify-and-forward (AF) relay network is presented under the condition of spatial-domain self-interference nulling. This method is designed to suit the availability of channel state information (CSI). If full CSI of source station (SS)-relay station (RS), RS-RS (self-interference channel), and RS-destination station (DS) links are available, the instantaneous end-to-end capacity is maximized. Otherwise, if CSI of the RS-DS link is either partially available (only covariance is known), or not available, while CSI of the other links is known, then the ergodic end-to-end capacity is maximized. Performance of the proposed FD-AF relay system is demonstrated through computer simulations, especially under various correlation conditions of the RS-DS link.
Thai-Mai Thi DINH Quoc-Tuan NGUYEN Dinh-Thong NGUYEN
Most recent work on cooperative spectrum sensing using cognitive radios has focused on issues involving the sensing channels and seemed to ignore those involving the reporting channels. Furthermore, no research has treated the effect of correlated composite Rayleigh-lognormal fading, also known as Suzuki fading, in cognitive radio. This paper proposes a technique for reuse of shadowed CRs, discarded during the sensing phase, as amplified-and-forward (AF) diversity relays for other surviving CRs to mitigate the effects of such fading in reporting channels. A thorough analysis of and a closed-form expression for the outage probability of the resulting cooperative AF diversity network in correlated composite Rayleigh-lognormal fading channels are presented in this paper. In particular, an efficient solution to the “PDF of sum-of-powers” of correlated Suzuki-distributed random variables using moment generating function (MGF) is proposed.
Huimin LIANG Jiaxin YOU Zhaowen CAI Guofu ZHAI
The reliability of electromagnetic relay (EMR) which contains a permanent magnet (PM) can be improved by a robust design method. In this parameter design process, the calculation of electromagnetic system is very important. In analytical calculation, PM is often equivalent to a lumped parameter model of one magnetic resistance and one magnetic potential, but significant error is often caused; in order to increase the accuracy, a distributed parameter calculation model (DPM) of PM bar is established; solution procedure as well as verification condition of this model is given; by a case study of the single PM bar, magnetic field lines division method is adopted to build the DPM, the starting point and section magnetic flux of each segment are solved, a comparison is made with finite element method (FEM) and measured data; the accuracy of this magnetic field line based distributed parameter model (MFDPM) in PM bar is verified; this model is applied to the electromagnetic system of a certain type EMR, electromagnetic system calculation model is established based on MFDPM, and the static force is calculated under different rotation angles; compared with traditional lumped parameter model and FEM, it proves to be of acceptable calculation accuracy and high calculation speed which fit the requirement of robust design.
Nan SHA Yuanyuan GAO Xiaoxin YI Wei JIAN Weiwei YANG
In this letter, we combine minimum-shift keying (MSK) with physical-layer network coding (PNC) to form a new scheme, i.e., MSK-PNC, for two-way relay channels (TWRCs). The signal detection of the MSK-PNC scheme is investigated, and two detection methods are proposed. The first one is orthogonal demodulation and mapping (ODM), and the second one is two-state differential detection (TSDD). The error performance of the proposed MSK-PNC scheme is evaluated through simulations.
Jie YANG Yingying YUAN Nan YANG Kai YANG Xiaofei ZHANG
We analyze the outage probability of the multiuser two-way relay network (TWRN) where the N-th best mobile user (MU) out of M MUs and the base station (BS) exchange messages with the aid of an amplify-and-forward relay. In the analysis, we focus on the practical unbalanced Nakagami-m fading between the MUs-relay link and the relay-BS link. We also consider both perfect and outdated channel state information (CSI) between the MUs and the relay. We first derive tight closed-form lower bounds on the outage probability. We then derive compact expressions for the asymptotic outage probability to explicitly characterize the network performance in the high signal-to-noise ratio regime. Based on our asymptotic results, we demonstrate that the diversity order is determined by both Nakagami-m fading parameters, M, and N when perfect CSI is available. When outdated CSI is available, the diversity order is determined by Nakagami-m fading parameters only. In addition, we quantify the contributions of M, N, and the outdated CSI to the outage probability via the array gain.
Nan WANG Ming CHEN Jianxin DAI Xia WU
In a sector of a single cell, due to the fading characteristic of wireless channels, several decode-and-forward relay stations are deployed to form a two-hop relay-assisted multicast system. We propose two schemes for the system, the first scheme combines the use of space-time code and distributed space-time code (DSTC), and the second one combines the use of DSTC and maximum ratio combining. We give an outage probability analysis for both of them. Based on this analysis, we manage to maximize the spectral efficiency under a preset outage probability confinement by finding out the optimal power allocation and relay location strategies. We use genetic algorithms to verify our analysis and numerical results show that the schemes proposed by us significantly outperform the scheme in previous work. We also show the effect of path loss exponent on the optimal strategy.
Binyue LIU Guiguo FENG Wangmei GUO
This paper studies an underlay-based cognitive two-way relay network which consists of a primary network (PN) and a secondary network (SN). Two secondary users (SUs) exchange information with the aid of multiple single-antenna amplify-and-forward relays while a primary transmitter communicates with a primary receiver in the same spectrum. Unlike the existing contributions, the transmit powers of the SUs and the distributed beamforming weights of the relays are jointly optimized to minimize the sum interference power from the SN to the PN under the quality-of-service (QoS) constraints of the SUs determined by their output signal-to-interference-plus-noise ratio (SINR) and the transmit power constraints of the SUs and relays. This approach leads to a non-convex optimization problem which is computationally intractable in general. We first investigate two necessary conditions that optimal solutions should satisfy. Then, the non-convex minimization problem is solved analytically based on the obtained conditions for single-relay scenarios. For multi-relay scenarios, an iterative numerical algorithm is proposed to find suboptimal solutions with low computational complexity. It is shown that starting with an arbitrarily initial feasible point, the limit point of the solution sequence derived from the iterative algorithm satisfies the two necessary conditions. To apply this algorithm, two approaches are developed to find an initial feasible point. Finally, simulation results show that on average, the proposed low-complexity solution considerably outperforms the scheme without source power control and performs close to the optimal solution obtained by a grid search technique which has prohibitively high computational complexity.
Ying ZHU Jia LIU Zhiyong FENG Ping ZHANG
This paper investigates power allocation and outage performance for the MIMO full duplex relaying (MFDR) based on orthogonal space-time block Codes (OSTBC) in cognitive radio systems. OSTBC transmission is used as a simple way to obtain multi-antenna diversity gain. Cognitive MFDR systems offer the advantage not only of increasing spectral efficiency by spectrum sharing but also of extending the coverage through the use of relays. In cognitive MFDR systems, the primary user experiences interference from the secondary source and relay simultaneously due to the full duplexing. What is therefore needed is a way to optimize the transmission powers at the secondary source and relay. Therefore, we propose an optimal power allocation (OPA) scheme based on minimizing the outage probability in cognitive MFDR systems. We then analyze the outage probability of the secondary user in the noise-limited and interference-limited environments under Nakagami-m fading channels. Simulation results show that the proposed schemes achieve performance improvement in terms of outage probability.
Jie YANG Xiaofei ZHANG Kai YANG
In this paper, we analyze the performance of a dual-hop multiuser amplify-and-forward (AF) relay network with the effect of the feedback delay, where the source and each of the K destinations are equipped with Nt and Nr antennas respectively, and the relay is equipped with a single antenna. In the relay network, multi-antenna and multiuser diversities are guaranteed via beamforming and opportunistic scheduling, respectively. To examine the impact of delayed feedback, the new exact analytical expressions for the outage probability (OP) and symbol error rate (SER) are derived in closed-form over Rayleigh fading channel, which are useful for a large number of modulation schemes. In addition, we present the asymptotic expressions for OP and SER in the high signal-to-noise ratio (SNR) regime, from which we gain an insight into the system performance with deriving the diversity order and array gain. Moreover, based on the asymptotic expressions, we determine power allocation among the network nodes such that the OP is minimized. The analytical expressions are validated by Monte-Carlo simulations.
The relay channel is the common approach to cooperative communication. Quasi-cyclic low-density parity-check (QC-LDPC) code design for the relay channel is important to cooperative communication. This paper proposes a bilayer QC-LDPC code design scheme for the relay channel. Combined with the bilayer graphical code structure, an improved Chinese remainder theorem (CRT) method, the Biff-CRT method is presented. For the proposed method we introduce a finite field approach. The good performance of the finite field based QC-LDPC code can improve the performance of its corresponding objective QC-LDPC code in the proposed scheme. We construct the FF code and the FA code by the Biff-CRT method. The FF code and the FA code are both named as their two component codes. For the FF code, the two component code are both finite field based QC-LDPC codes. For the FA code, one of the component codes is the finite field based QC-LDPC code and the other is the array code. For the existing CRT method, the shortened array code and the array code are usually used as the component codes to construct the SA code. The exponent matrices of FF code, FA code and SA code are given both for the overall graph and the lower graph. Bit error rate (BER) simulation results indicate that the proposed FF code and FA code are superior to the SA code both at the relay node and the destination node. In addition, the theoretical limit and the BER of the bilayer irregular LDPC code are also given to compare with the BER of the proposed QC-LDPC codes. Moreover, the proposed Biff-CRT method is flexible, easy to implement and effective for constructing the QC-LDPC codes for the relay channel, and it is attractive for being used in the future cooperative communication systems.
Jaeyoung LEE Hyundong SHIN Jun HEO
In this paper, we consider decouple-and-forward (DCF) relaying, where the relay encodes and amplifies decoupled data using orthogonal space-time block codes (OSTBCs), to achieve the maximum diversity gain of multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying. Since the channel status of all antennas is generally unknown and time-varying for cooperation in multi-antenna multiple-relay systems, we investigate an opportunistic relaying scheme for DCF relaying to harness distributed antennas and minimize the cooperation overheads by not using the global channel state information (CSI). In addition, for realistic wireless channels which have spatial fading correlation due to closely-spaced antenna configurations and poor scattering environments, we analyze the exact and lower bound on the symbol error probability (SEP) of the opportunistic DCF relaying over spatially correlated MIMO Rayleigh fading channels. Numerical results show that, even in the presence of spatial fading correlation, the proposed opportunistic relaying scheme is efficient and achieves additional performance gain with low overhead.
Takeshi ONIZAWA Hiroki SHIBAYAMA Masashi IWABUCHI Akira KISHIDA Makoto UMEUCHI Tetsu SAKATA
This paper describes a simple packet combining scheme with maximum likelihood detection (MLD) for multiple-input multiple-output with orthogonal frequency division multiplexing (MIMO-OFDM) in relay channels to construct reliable wireless links in wireless local area networks (LANs). Our MLD-based approach employs the multiplexed sub-stream signals in different transmit slots. The proposed scheme uses an additional combining process before MLD processing. Moreover, the proposed scheme sets the cyclic shift delay (CSD) operation in the relay terminal. We evaluate the performance of the proposed scheme by the packet error rate (PER) and throughput performance in the decode-and-forward (DF) strategy. First, we show that the proposed scheme offers approximately 4.5dB improvement over the conventional scheme in the received power ratio of the relay terminal to the destination terminal at PER =0.1. Second, the proposed scheme achieves about 1.6 times the throughput of the conventional scheme when the received power ratio of the relay terminal to the destination terminal is 3dB.
Ning WANG Zhiguo DING Xuchu DAI
In this paper, we focus on the multi-way relaying channel where K users wish to exchange information with each other within two phases. Precoding at each user and the relay is carefully constructed to ensure that the signals from the same user pair are grouped together and cross-pair interference can be cancelled. Reliable detection is challenging at the relay since the observation constellation is no longer one of the regular ones, due to the fact that a relay observation is the superposition of the messages from one of the $rac{1}{2}K(K-1)$ user pairs. When the trellis coded modulation is used at each node, a simple constellation mapping function and a reduced-states decoding scheme can be applied at the relay, which result in much lower complexity. Furthermore, a modified version of the decoding method is also developed which is called the re-encoding-avoidance scheme at the relay. Monte-Carlo simulation results are provided to demonstrate the performance of the proposed scheme.
Siye WANG Yanjun ZHANG Bo ZHOU Wenbiao ZHOU Dake LIU
In this paper, we consider a two-way multi-relay scenario and analyze the bit error rate (BER) and outage performance of an amplify-and-forward (AF) relaying protocol. We first investigate the bit error probability by considering channel estimation error. With the derivation of effective signal-to-noise ratio (SNR) at the transceiver and its probability density function (PDF), we can obtain a closed form formulation of the total average error probability of two-way multi-relay system. Furthermore, we also derive exact expressions of the outage probability for two-way relay through the aid of a modified Bessel function. Finally, numerical experiments are performed to verify the analytical results and show that our theoretical derivations are exactly matched with simulations.
Mochan YANG Shannai WU Hak-Seong KIM Kyong-Bin SONG Won Cheol LEE Oh-Soon SHIN Yoan SHIN
A D2D (Device-to-Device) communication system needs to cope with inter-cell interference and other types of interferences between cellular network and D2D links. As a result, macro user equipments, particularly those located near a cell edge, will suffer from serious link performance degradation. We propose a novel interference avoidance mechanism assisted by the SRN (Shared Relay Node) in this letter. The SRN not only performs data re-transmission as a typical type-II relay, but has several newly defined features to avoid interference between cellular network and D2D links. The superb performance by the proposed scheme is evaluated through extensive system level simulations.
Kazuhiro KIMURA Hiroyuki MIYAZAKI Tatsunori OBARA Fumiyuki ADACHI
2-time slot cooperative relay can be used to increase the cell-edge throughput. Adaptive data modulation further improves the throughput. In this paper, we introduce adaptive modulation to single-carrier (SC) cooperative decode-and-forward (DF) relay. The best modulation combination for mobile-terminal (MT)-relay station (RS) and RS-base station (BS) links is determined for the given local average signal-to-noise power ratios (SNRs) of MT-BS, MT-RS and RS-BS links. According to the modulation combination, the ratio of time slot length of the MT-RS link (first time slot) and the RS-BS link (second time slot) is changed. It is shown by computer simulation that the use of adaptive modulation can achieve higher throughput than fixed modulation and reduces by about 9dB the required normalized total transmit SNR for a 10%-outage throughput of 0.8 bps/Hz compared to direct transmission.