Keyword Search Result

[Keyword] simulation(575hit)

1-20hit(575hit)

  • PSO-CGAN-Based Iced Transmission Line Galloping Prediction Method Open Access

    Yun LIANG  Degui YAO  Yang GAO  Kaihua JIANG  

     
    PAPER-Systems and Control

      Pubricized:
    2024/07/29
      Vol:
    E108-A No:2
      Page(s):
    53-64

    The phenomena of iced line galloping in overhead transmission lines, caused by wind or asymmetric icing, can directly result in structural damage, windage yaw discharge of conductor, and metal damage, posing significant risks to the operation of power systems. However, the existing prediction methods for iced line galloping are difficult to achieve accurate predictions due to the lack of a large amount of iced line galloping data that matches real-world conditions. To address these issues, this paper studies the overhead iced transmission line galloping response prediction. First, the models of finite element, aerodynamic coefficient, and aerodynamic excitation for the iced conductor are constructed. The dynamic response of the conductor is simulated using finite element software to obtain a dataset of conductor galloping under different parameters. Secondly, a particle swarm optimization-conditional generative adversarial network (PSO-CGAN) based iced transmission line galloping prediction model is proposed, where the weight parameters of loss function in CGAN are optimized by PSO. The model takes initial wind attack angle, wind speed, and span as inputs to output prediction results of iced transmission line galloping. Then, based on the dynamics and galloping features of the conductor, the effects of different initial wind attack angles, wind speeds, and icing thickness on galloping are analyzed. Finally, the superior performance of the proposed model is verified through simulations.

  • A Framework for Modeling Airspace Traffic Flow without Using Any Specific Waypoints Open Access

    Kenji UEHARA  Kunihiko HIRAISHI  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2024/07/22
      Vol:
    E108-A No:1
      Page(s):
    20-31

    In this paper, we present a framework for composing discrete-event simulation models from a large amount of airspace traffic data without using any specific waypoints. The framework consists of two parts. In the first part, abstracted route graphs that indicate representative routes in the airspace are composed. We propose two methods for extracting important routes in the form of graphs based on combination of various technologies such as space partition, trajectory clustering, and skeleton extraction. In the second part, discrete-event simulation models are composed based on statistical information on flight time along each edge of the abstracted route graph. The composed simulation models have intermediate granularity between micro models, such as multi-agent simulation, and macro models, such as queuing models, and therefore they should be classified as mesoscopic models. Finally, we show numerical results to evaluate the accuracy of the simulation model.

  • Identification of Dominant Side-Channel Information Leaking Mechanism Induced by Split Ground Planes Open Access

    Kengo IOKIBE  Kohei SHIMODA  Masaki HIMURO  Yoshitaka TOYOTA  

     
    INVITED PAPER

      Vol:
    E107-B No:12
      Page(s):
    852-860

    This study examines the threat of information leakage when digital ICs, which process sensitive information such as cryptographic operations and handling of personal and confidential information, are mounted on printed circuit boards with split ground (GND) planes. We modeled the mechanism of generating such information leakage and proposed a methodology to control it. It is known that the GND plane of a printed circuit board on which digital integrated circuits are mounted should be solid and undivided to ensure signal integrity, power integrity, and electromagnetic compatibility. However, in actual designs, printed circuit boards may have split GND planes to isolate analog and digital circuits, isolate high-voltage and low-voltage circuits, or integrate multi-function electronic control units. Such split GND planes can increase the risk of electromagnetic information leakage. We, therefore, investigated a side-channel attack standard evaluation board, SASEBO-G, which has been reported to leak cryptographic information superimposed on common-mode currents, known as one of the major causes of electromagnetic emanation. Our experimental results showed that the split GND planes were the dominant cause of common-mode (CM) information leakage. Next, we constructed an equivalent circuit model of the dominant leakage mechanism and confirmed that the behavior of side-channel information leakage superimposed in the simulated CM current was consistent with the measured results. We also confirmed that to mitigate side-channel information leakage in CM caused by the potential difference between the split GND planes, the impedance should be reduced in the information leakage band by connecting the GND planes with capacitors, and the like. In addition, the RF band coupling between cables should be weakened if the cables are connected to the split GND planes.

  • Simulation of Radar Sea Clutter in Correlated Generalized Compound Distribution Based on Improved ZMNL Open Access

    Yi CHENG  Kexin LI  Chunbo XIU  Jiaxin LIU  

     
    PAPER-Sensing

      Vol:
    E107-B No:11
      Page(s):
    802-808

    In modern radar systems, the Generalized compound distribution model is more suitable for describing the amplitude distribution characteristics of radar sea clutter. Accurately and efficiently simulating sea clutter has important practical significance for radar signal processing and sea surface target detection. However, in traditional zero memory nonlinearity (ZMNL) method, the correlated Generalized compound distribution model cannot deal with non-integral or non-semi-integral parameter. In order to overcome this shortcoming, a new method of generating correlated Generalized compound distributed clutter is proposed, which changes the generation method of Generalized Gamma distributed random sequences in traditional Generalized compound distribution models. Firstly, by combining with the Gamma distribution and using the additivity of the Gamma distribution, the Probability Density Function (PDF) of Gamma function is transformed into a second-order nonlinear ordinary differential equation, and the Gamma distributed sequence under arbitrary parameter is solved. Then the Generalized Gamma distributed sequence with arbitrary parameter can be obtained through the nonlinear transformation relationship between the Generalized Gamma distribution and the Gamma distribution, so that the shape parameters of the Generalized compound distributed sea clutter are extended to general real numbers. Simulation results show that the proposed method is not only suitable for clutter simulation with non-integral or non-semi-integral shape parameter values, but also further improves the fitting degree.

  • Efficiency Enhancement of a Single-Diode Rectenna Using Harmonic Control of the Antenna Impedance Open Access

    Katsumi KAWAI  Naoki SHINOHARA  Tomohiko MITANI  

     
    PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    323-331

    This study introduces a novel single-diode rectenna, enhancing the rf-dc conversion efficiency using harmonic control of the antenna impedance. We employ source-pull simulations encompassing the fundamental frequency and the harmonics to achieve a highly efficient rectenna. The results of the source-pull simulations delineate the source-impedance ranges required for enhanced efficiency at each harmonic. Based on the source-pull simulation results, we designed two inverted-F antenna with input impedances within and without these identified source impedance ranges. Experimental results show that the proposed rectenna has a maximum rf-dc conversion efficiency of 75.9% at the fundamental frequency of 920 MHz, an input power of 10.8 dBm, and a load resistance of 1 kΩ, which is higher than that of the comparative rectenna without harmonic control of the antenna impedance. This study demonstrates that the proposed rectenna achieves high efficiency through the direct connection of the antenna and the single diode, along with harmonic control of the antenna impedance.

  • A Combination Method for Impedance Extraction of SMD Electronic Components Based on Full-Wave Simulation and De-Embedding Technique Open Access

    Yang XIAO  Zhongyuan ZHOU  Mingjie SHENG  Qi ZHOU  

     
    PAPER-Measurement Technology

      Pubricized:
    2024/02/15
      Vol:
    E107-A No:8
      Page(s):
    1345-1354

    The method of extracting impedance parameters of surface mounted (SMD) electronic components by test is suitable for components with unknown model or material information, but requires consideration of errors caused by non-coaxial and measurement fixtures. In this paper, a fixture for impedance measurement is designed according to the characteristics of passive devices, and the fixture de-embedding method is used to eliminate errors and improve the test accuracy. The method of obtaining S parameters of fixture based on full wave simulation proposed in this paper can provide a thought for obtaining S parameters in de-embedding. Taking a certain patch capacitor as an example, the S parameters for de-embedding were obtained using methods based on full wave simulation, 2×Thru, and ADS simulation, and de-embedding tests were conducted. The results indicate that obtaining the S parameter of the testing fixture based on full wave simulation and conducting de-embedding testing compared to ADS simulation can accurately extract the impedance parameters of SMD electronic components, which provides a reference for the study of electromagnetic interference (EMI) coupling mechanism.

  • Interdigital and Multi-Via Structures for Mushroom-Type Metasurface Reflectors

    Taisei URAKAMI  Tamami MARUYAMA  Shimpei NISHIYAMA  Manato KUSAMIZU  Akira ONO  Takahiro SHIOZAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:2
      Page(s):
    309-320

    The novel patch element shapes with the interdigital and multi-via structures for mushroom-type metasurface reflectors are proposed for controlling the reflection phases. The interdigital structure provides a wide reflection phase range by changing the depth of the interdigital fingers. In addition, the multi-via structure provides the higher positive reflection phases such as near +180°. The sufficient reflection phase range of 360° and the low polarization dependent properties could be confirmed by the electromagnetic field simulation. The metasurface reflector for the normal incident plane wave was designed. The desired reflection angles and sharp far field patterns of the reflected beams could be confirmed in the simulation results. The prototype reflectors for the experiments should be designed in the same way as the primary reflector design of the reflector antenna. Specifically, the reflector design method based on the ray tracing method using the incident wave phase was proposed for the prototype. The experimental radiation pattern for the reflector antenna composed of the transmitting antenna (TX) and the prototype metasurface reflector was similar to the simulated radiation pattern. The effectiveness of the proposed structures and their design methods could be confirmed by these simulation and experiment results.

  • Experimental Exploration of the Backside ESD Impacts on an IC Chip in Flip Chip Packaging

    Takuya WADATSUMI  Kohei KAWAI  Rikuu HASEGAWA  Kikuo MURAMATSU  Hiromu HASEGAWA  Takuya SAWADA  Takahito FUKUSHIMA  Hisashi KONDO  Takuji MIKI  Makoto NAGATA  

     
    PAPER

      Pubricized:
    2023/04/13
      Vol:
    E106-C No:10
      Page(s):
    556-564

    This paper presents on-chip characterization of electrostatic discharge (ESD) impacts applied on the Si-substrate backside of a flip-chip mounted integrated circuit (FC-IC) chip. An FC-IC chip has an open backside and there is a threat of reliability problems and malfunctions caused by the backside ESD. We prepared a test FC-IC chip and measured Si-substrate voltage fluctuations on its frontside by an on-chip monitor (OCM) circuit. The voltage surges as large as 200mV were observed on the frontside when a 200-V ESD gun was irradiated through a 5kΩ contact resistor on the backside of a 350μm thick Si substrate. The distribution of voltage heights was experimentally measured at 20 on-chip locations among thinned Si substrates up to 40μm, and also explained in full-system level simulation of backside ESD impacts with the equivalent models of ESD-gun operation and FC-IC chip assembly.

  • Dynamic Evolution Simulation of Bus Bunching Affected by Traffic Operation State

    Shaorong HU  Yuqi ZHANG  Yuefei JIN  Ziqi DOU  

     
    PAPER-Intelligent Transportation Systems

      Pubricized:
    2022/04/13
      Vol:
    E106-D No:5
      Page(s):
    746-755

    Bus bunching often occurs in public transit system, resulting in a series of problems such as poor punctuality, long waiting time and low service quality. In this paper, we explore the influence of the discrete distribution of traffic operation state on the dynamic evolution of bus bunching. Firstly, we use self-organizing map (SOM) to find the threshold of bus bunching and analyze the factors that affect bus bunching based on GPS data of No. 600 bus line in Xi'an. Then, taking the bus headway as the research index, we construct the bus bunching mechanism model. Finally, a simulation platform is built by MATLAB to examine the trend of headway when various influencing factors show different distribution states along the bus line. In terms of influencing factors, inter vehicle speed, queuing time at intersection and loading time at station are shown to have a significant impact on headway between buses. In terms of the impact of the distribution of crowded road sections on headway, long-distance and concentrated crowded road sections will lead to large interval or bus bunching. When the traffic states along the bus line are randomly distributed among crowded, normal and free, the headway may fluctuate in a large range, which may result in bus bunching, or fluctuate in a small range and remain relatively stable. The headway change curve is determined by the distribution length of each traffic state along the bus line. The research results can help to formulate improvement measures according to traffic operation state for equilibrium bus headway and alleviating bus bunching.

  • Simulation Research on Low Frequency Magnetic Radiation Emission of Shipboard Equipment

    Yang XIAO  Zhongyuan ZHOU  Changping TANG  Jinjing REN  Mingjie SHENG  Zhengrui XU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/07/27
      Vol:
    E106-C No:2
      Page(s):
    41-49

    This paper first introduces the structure of a shipboard equipment control cabinet and the preliminary design of electromagnetic shielding, then introduces the principle of low-frequency magnetic field shielding, and uses silicon steel sheet to shield the low-frequency magnetic field of shipboard equipment control equipment. Based on ANSYS Maxwell simulation software, the low-frequency magnetic field radiation emission of the equipment's conducted harmonic peak frequency point is simulated. Finally, according to MIL-STD-461G test standard, the low-frequency magnetic field radiation emission test is carried out, which meets the limit requirements of the standard. The low-frequency magnetic field shielding technology has practical value. The low-frequency magnetic field radiation emission simulation based on ANSYS Maxwell proposed in this paper is a useful attempt for the quantitative simulation of radiation emission.

  • Evaluation and Extraction of Equivalent Circuit Parameters for GSG-Type Bonding Wires Using Electromagnetic Simulator Open Access

    Takuichi HIRANO  

     
    BRIEF PAPER

      Pubricized:
    2022/05/17
      Vol:
    E105-C No:11
      Page(s):
    692-695

    In this paper, the author performed an electromagnetic field simulation of a typical bonding wire structure that connects a chip and a package, and evaluated the signal transmission characteristics (S-parameters). In addition, the inductance per unit length was extracted by comparing with the equivalent circuit of the distributed constant line. It turns out that the distributed constant line model is not sufficient because there are frequencies where chip-package resonance occurs. Below the resonance frequency, the conventional low-frequency approximation model was effective, and it was found that the inductance was about 1nH/mm.

  • Bayesian Optimization Methods for Inventory Control with Agent-Based Supply-Chain Simulator Open Access

    Takahiro OGURA  Haiyan WANG  Qiyao WANG  Atsuki KIUCHI  Chetan GUPTA  Naoshi UCHIHIRA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2022/02/25
      Vol:
    E105-A No:9
      Page(s):
    1348-1357

    We propose a penalty-based and constraint Bayesian optimization methods with an agent-based supply-chain (SC) simulator as a new Monte Carlo optimization approach for multi-echelon inventory management to improve key performance indicators such as inventory cost and sales opportunity loss. First, we formulate the multi-echelon inventory problem and introduce an agent-based SC simulator architecture for the optimization. Second, we define the optimization framework for the formulation. Finally, we discuss the evaluation of the effectiveness of the proposed methods by benchmarking it against the most commonly used genetic algorithm (GA) in simulation-based inventory optimization. Our results indicate that the constraint Bayesian optimization can minimize SC inventory cost with lower sales opportunity loss rates and converge to the optimal solution 22 times faster than GA in the best case.

  • Boosting CPA to CCA2 for Leakage-Resilient Attribute-Based Encryption by Using New QA-NIZK Open Access

    Toi TOMITA  Wakaha OGATA  Kaoru KUROSAWA  

     
    PAPER

      Pubricized:
    2021/09/17
      Vol:
    E105-A No:3
      Page(s):
    143-159

    In this paper, we construct the first efficient leakage-resilient CCA2 (LR-CCA2)-secure attribute-based encryption (ABE) schemes. We also construct the first efficient LR-CCA2-secure identity-based encryption (IBE) scheme with optimal leakage rate. To obtain our results, we develop a new quasi-adaptive non-interactive zero-knowledge (QA-NIZK) argument for the ciphertext consistency of the LR-CPA-secure schemes. Our ABE schemes are obtained by boosting the LR-CPA-security of some existing schemes to the LR-CCA2-security by using our QA-NIZK arguments. The schemes are almost as efficient as the underlying LR-CPA-secure schemes.

  • Simulation-Based Understanding of “Charge-Sharing Phenomenon” Induced by Heavy-Ion Incident on a 65nm Bulk CMOS Memory Circuit

    Akifumi MARU  Akifumi MATSUDA  Satoshi KUBOYAMA  Mamoru YOSHIMOTO  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/08/05
      Vol:
    E105-C No:1
      Page(s):
    47-50

    In order to expect the single event occurrence on highly integrated CMOS memory circuit, quantitative evaluation of charge sharing between memory cells is needed. In this study, charge sharing area induced by heavy ion incident is quantitatively calculated by using device-simulation-based method. The validity of this method is experimentally confirmed using the charged heavy ion accelerator.

  • Solving 3D Container Loading Problems Using Physics Simulation for Genetic Algorithm Evaluation

    Shuhei NISHIYAMA  Chonho LEE  Tomohiro MASHITA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/06
      Vol:
    E104-D No:11
      Page(s):
    1913-1922

    In this work, an optimization method for the 3D container loading problem with multiple constraints is proposed. The method consists of a genetic algorithm to generate an arrangement of cargo and a fitness evaluation using a physics simulation. The fitness function considers not only the maximization of the container density and fitness value but also several different constraints such as weight, stack-ability, fragility, and orientation of cargo pieces. We employed a container shaking simulation for the fitness evaluation to include constraint effects during loading and transportation. We verified that the proposed method successfully provides the optimal cargo arrangement for small-scale problems with about 10 pieces of cargo.

  • Deadlock-Free Symbolic Smith Controllers Based on Prediction for Nondeterministic Systems Open Access

    Masashi MIZOGUCHI  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1593-1602

    The Smith method has been used to control physical plants with dead time components, where plant states after the dead time is elapsed are predicted and a control input is determined based on the predicted states. We extend the method to the symbolic control and design a symbolic Smith controller to deal with a nondeterministic embedded system. Due to the nondeterministic transitions, the proposed controller computes all reachable plant states after the dead time is elapsed and determines a control input that is suitable for all of them in terms of a given control specification. The essence of the Smith method is that the effects of the dead time are suppressed by the prediction, however, which is not always guaranteed for nondeterministic systems because there may exist no control input that is suitable for all predicted states. Thus, in this paper, we discuss the existence of a deadlock-free symbolic Smith controller. If it exists, it is guaranteed that the effects of the dead time can be suppressed and that the controller can always issue the control input for any reachable state of the plant. If it does not exist, it is proved that the deviation from the control specification is essentially inevitable.

  • Desirable ITS Communication for Safety: Evaluation by the TsRm Evaluation Method for Overengineering Prevention, and Discussion About Sensor and Communication Fusion

    Ikkei HASEBE  Takaaki HASEGAWA  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2021/04/01
      Vol:
    E104-A No:10
      Page(s):
    1379-1388

    In this paper, for the purpose of clarifying the desired ITS information and communication systems considering both safety and social feasibility to prevention overengineering, using a microscopic traffic flow simulator, we discuss the required information acquisition rate of three types of safety driving support systems, that is, the sensor type and the communication type, the sensor and communication fusion type. Performances are evaluated from the viewpoint of preventing overengineering performance using the “TsRm evaluation method” that considers a vehicle approaching within the range of R meters within T seconds as the vehicle with a high possibility of collision, and that evaluates only those vehicles. The results show that regarding the communication radius and the sensing range, overengineering performance may be estimated when all vehicles in the evaluation area are used for evaluations without considering each vehicle's location, velocity and acceleration as in conventional evaluations. In addition, it is clarified that the sensor and communication fusion type system is advantageous by effectively complementing the defects of the sensor type systems and the communication type systems.

  • An Efficient Aircraft Boarding Strategy Considering Implementation

    Kenji UEHARA  Kunihiko HIRAISHI  Kokolo IKEDA  

     
    PAPER-Mathematical Systems Science

      Pubricized:
    2021/01/22
      Vol:
    E104-A No:8
      Page(s):
    1051-1058

    Boarding is the last step of aircraft turnaround and its completion in the shortest possible time is desired. In this paper, we propose a new boarding strategy that outperforms conventional strategies such as the back-to-front strategy and the outside-in strategy. The Steffen method is known as one of the most efficient boarding strategies in literature, but it is hard to be realized in the real situation because the complete sorting of passengers in a prescribed order is required. The proposed strategy shows a performance close to that of the Steffen method and can be easily implemented by using a special gate system.

  • Improvement of CT Reconstruction Using Scattered X-Rays

    Shota ITO  Naohiro TODA  

     
    PAPER-Biological Engineering

      Pubricized:
    2021/05/06
      Vol:
    E104-D No:8
      Page(s):
    1378-1385

    A neural network that outputs reconstructed images based on projection data containing scattered X-rays is presented, and the proposed scheme exhibits better accuracy than conventional computed tomography (CT), in which the scatter information is removed. In medical X-ray CT, it is a common practice to remove scattered X-rays using a collimator placed in front of the detector. In this study, the scattered X-rays were assumed to have useful information, and a method was devised to utilize this information effectively using a neural network. Therefore, we generated 70,000 projection data by Monte Carlo simulations using a cube comprising 216 (6 × 6 × 6) smaller cubes having random density parameters as the target object. For each projection simulation, the densities of the smaller cubes were reset to different values, and detectors were deployed around the target object to capture the scattered X-rays from all directions. Then, a neural network was trained using these projection data to output the densities of the smaller cubes. We confirmed through numerical evaluations that the neural-network approach that utilized scattered X-rays reconstructed images with higher accuracy than did the conventional method, in which the scattered X-rays were removed. The results of this study suggest that utilizing the scattered X-ray information can help significantly reduce patient dosing during imaging.

  • On Traffic Flow Evaluation for a Multimodal Transport Society

    Go ISHII  Takaaki HASEGAWA  Daichi CHONO  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    357-365

    In this paper, we build a microscopic simulator of traffic flow in a three-modal transport society for pedestrians/slow vehicles/vehicles (P/SV/V) to evaluate a post P/V society. The simulator assumes that the SV includes bicycles and micro electric vehicles, whose speed is strictly and mechanically limited up to 30 km/h. In addition, this simulator adopts an SV overtaking model. Modal shifts caused by modal diversity requires new valuation indexes. The simulator has a significant feature of a traveler-based traffic demand simulation not a vehicle-based traffic demand simulation as well as new evaluation indexes. New assessment taking this situation into account is conducted and the results explain new aspects of traffic flow in a three-mode transport society.

1-20hit(575hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.