Masahiro NAKAGAWA Haruka MINAMI Takafumi FUKATANI Takeshi SEKI Rie HAYASHI Takeshi KUWAHARA
IoT and AI-related services and applications are becoming more common and it is expected that cyber-physical systems will enrich our daily lives in the near future. In such a situation, a huge amount of data is exchanged throughout the world in a real time fashion, which will increasingly push the need for optical network evolution. Considering these trends, intensive efforts on research and development have recently been dedicated to realize All-Photonics Network (APN) that is a key element of Innovative Optical and Wireless Network (IOWN). For materializing APN vision, one of the fundamental challenges is to expand network capacity in a highly cost- and energy-efficient manner. Meanwhile, many detailed studies have greatly improved the performance of multi-band optical networks. Thanks to such efforts, multi-band networking has been becoming feasible as a promising capacity-scaling solution, which can be a key enabler for APN. This paper reviews the recent advances in the multi-band optical network from various aspects. Specifically, we take a quick look at the studies enabling multi-band transmission in terms of devices design of transceiver and amplifier, quality-of-transmission estimation, and launch power optimization. Then, we focus on progress in optical switch technology, optical node configuration, path provisioning, and network analysis, aiming to deploy multi-band networks nationwide. We also refer to several emerging technologies, which include our efforts related to wavelength-selective band switching technology. This paper gives an opportunity to understand the trends and potential of multi-band optical networking.
This study explores adaptive output feedback leader-following in networks of linear systems utilizing switching logic. A local state observer is employed to estimate the true state of each agent within the network. The proposed protocol is based on the estimated states obtained from neighboring agents and employs a switching logic to tune its adaptive gain by utilizing only local neighboring information. The proposed leader-following protocol is fully distributed because it has a distributed adaptive gain and relies on only local information from its neighbors. Consequently, compared to conventional adaptive protocols, the proposed design method provides the advantages of a very simple adaptive law and dynamics with a low dimension.
Zhibo CAO Pengfei HAN Hongming LYU
This paper introduces a computer-aided low-power design method for tapered buffers that address given load capacitances, output transition times, and source impedances. Cross-voltage-domain tapered buffers involving a low-voltage domain in the frontier stages and a high-voltage domain in the posterior stages are further discussed which breaks the trade-off between the energy dissipation and the driving capability in conventional designs. As an essential circuit block, a dedicated analytical model for the level-shifter is proposed. The energy-optimized tapered buffer design is verified for different source and load conditions in a 180-nm CMOS process. The single-VDD buffer model achieves an average inaccuracy of 8.65% on the transition loss compared with Spice simulation results. Cross-voltage tapered buffers can be optimized to further remarkably reduce the energy consumption. The study finds wide applications in energy-efficient switching-mode analog applications.
Shiling SHI Stefan HOLST Xiaoqing WEN
High power dissipation during scan test often causes undue yield loss, especially for low-power circuits. One major reason is that the resulting IR-drop in shift mode may corrupt test data. A common approach to solving this problem is partial-shift, in which multiple scan chains are formed and only one group of scan chains is shifted at a time. However, existing partial-shift based methods suffer from two major problems: (1) their IR-drop estimation is not accurate enough or computationally too expensive to be done for each shift cycle; (2) partial-shift is hence applied to all shift cycles, resulting in long test time. This paper addresses these two problems with a novel IR-drop-aware scan shift method, featuring: (1) Cycle-based IR-Drop Estimation (CIDE) supported by a GPU-accelerated dynamic power simulator to quickly find potential shift cycles with excessive peak IR-drop; (2) a scan shift scheduling method that generates a scan chain grouping targeted for each considered shift cycle to reduce the impact on test time. Experiments on ITC'99 benchmark circuits show that: (1) the CIDE is computationally feasible; (2) the proposed scan shift schedule can achieve a global peak IR-drop reduction of up to 47%. Its scheduling efficiency is 58.4% higher than that of an existing typical method on average, which means our method has less test time.
Intrinsic Josephson junctions (IJJs) in the high-Tc cuprate superconductors have several fascinating properties, which are superior to the usual Josephson junctions obtained from conventional superconductors with low Tc, as follows; (1) a very thin thickness of the superconducting layers, (2) a strong interaction between junctions since neighboring junctions are closely connected in an atomic scale, (3) a clean interface between the superconducting and insulating layers, realized in a single crystal with few disorders. These unique properties of IJJs can enlarge the applicable areas of the superconducting qubits, not only the increase of qubit-operation temperature but the novel application of qubits including the macroscopic quantum states with internal degree of freedom. I present a comprehensive review of the phase dynamics in current-biased IJJs and argue the challenges of superconducting qubits utilizing IJJs.
Masahiro NAKAGAWA Hiroki KAWAHARA Takeshi SEKI Takashi MIYAMURA
Multi-band transmission technologies promise to cost-effectively expand the capacity of optical networks by exploiting low-loss spectrum windows beyond the conventional band used in already-deployed fibers. While such technologies offer a high potential for capacity upgrades, available capacity is seriously restricted not only by the wavelength-continuity constraint but also by the signal-to-noise ratio (SNR) constraint. In fact, exploiting more bands can cause higher SNR imbalance over multiple bands, which is mainly due to stimulated Raman scattering. To relax these constraints, we propose wavelength-selective band switching-enabled networks (BSNs), where each wavelength channel can be freely switched to any band and in any direction at any optical node on the route. We also present two typical optical node configurations utilizing all-optical wavelength converters, which can realize the switching proposal. Moreover, numerical analyses clarify that our BSN can reduce the fiber resource requirements by more than 20% compared to a conventional multi-band network under realistic conditions. We also discuss the impact of physical-layer performance of band switching operations on available benefits to investigate the feasibility of BSNs. In addition, we report on a proof-of-concept demonstration of a BSN with a prototype node, where C+L-band wavelength-division-multiplexed 112-Gb/s dual-polarization quadrature phase-shift keying signals are successfully transmitted while the bands of individual channels are switched node-by-node for up to 4 cascaded nodes.
Tomoki SHIMIZU Kohei ITO Kensuke IIZUKA Kazuei HIRONAKA Hideharu AMANO
The multi-FPGA system known as, the Flow-in-Cloud (FiC) system, is composed of mid-range FPGAs that are directly interconnected by high-speed serial links. FiC is currently being developed as a server for multi-access edge computing (MEC), which is one of the core technologies of 5G. Because the applications of MEC are sometimes timing-critical, a static time division multiplexing (STDM) network has been used on FiC. However, the STDM network exhibits the disadvantage of decreasing link utilization, especially under light traffic. To solve this problem, we propose a hybrid router that combines packet switching for low-priority communication and STDM for high-priority communication. In our hybrid network, the packet switching uses slots that are unused by the STDM; therefore, best-effort communication by packet switching and QoS guarantee communication by the STDM can be used simultaneously. Furthermore, to improve each link utilization under a low network traffic load, we propose a dynamic communication switching algorithm. In our algorithm, each router monitors the network load metrics, and according to the metrics, timing-critical tasks select the STDM according to the metrics only when congestion occurs. This can achieve both QoS guarantee and efficient utilization of each link with a small resource overhead. In our evaluation, the dynamic algorithm was up to 24.6% faster on the execution time with a high network load compared to the packet switching on a real multi-FPGA system with 24 boards.
Satoshi TANAKA Kenji MUKAI Shohei IMAI Hiroshi OKABE
Mobile phone systems continue to evolve from the 2nd generation, which began in the early 1990s, to the 5th generation, which is now in service. Along with this evolution, the power amplifier (PA) is also evolved. The characteristics required for PA are changing with each generation. In this paper, we will give an overview of the evolution of PAs from the 2nd generation mobile phones such as GSM (global system for mobile communications) to the 5th generation mobile phones that is often called NR (new radio), in particular, the circuit system. Specifically, the following five items will be described. (1) Ramp-up and ramp-down power control circuit corresponding to GSM, (2) Self-bias circuit technology for improving linearity that becomes important after W-CDMA (wideband code division multiple access), (3) Power mode switching methods for improving efficiency at low output power, (4) Power combining methods that have become important since LTE (long term evolution), and (5) Backoff efficiency improvement methods represented by ET (envelop tracking) and Doherty PA.
There are continuous and strong demands for the DC-DC converter to reduce the size of passive components and increase the system power density. Advances in CMOS processes and GaN FETs enabled the switching frequency of DC-DC converters to be beyond 10MHz. The advancements of 3-D integrated magnetics will further reduce the footprint. In this paper, the overview of beyond-10MHz DC-DC converters will be provided first, and our recent achievements are introduced focusing on 3D-integration of Fe-based metal composite magnetic core inductor, and GaN FET control designs.
Zheying HUANG Ji XU Qingwei ZHAO Pengyuan ZHANG
Although end-to-end based speech recognition research for Mandarin-English code-switching has attracted increasing interests, it remains challenging due to data scarcity. Meta-learning approach is popular with low-resource modeling using high-resource data, but it does not make full use of low-resource code-switching data. Therefore we propose a two-fold cross-validation training framework combined with meta-learning approach. Experiments on the SEAME corpus demonstrate the effects of our method.
Takahito TSUKAMOTO Go OTSURU Yukitoshi SANADA
In this paper, a macro cell switching scheme for distributed antennas is proposed. In conventional distributed antenna transmission (DAT), the macro cell to which each antenna belongs is fixed. Though a cell-free system has been investigated because of its higher system throughput, the implementation cost of front-hauls can be excessive. To increase the flexibility of resource allocation in the DAT with moderate front-haul complexity, we propose the macro cell switching of distributed antennas (DAs). In the proposed scheme, DAs switch their attribution macro cells depending on the amount of pre-assigned connections. Numerical results obtained through computer simulation show that the proposed scheme realizes a better system throughput than the conventional system, especially when the number of user equipments (UEs) is smaller and the distance between DAs are larger.
Maodudul HASAN Eisuke NISHIYAMA Ichihiko TOYODA
Herein, a novel self-oscillating active integrated array antenna (AIAA) is proposed for beam switching X-band applications. The proposed AIAA comprises four linearly polarized microstrip antenna elements, a Gunn oscillator, two planar magic-Ts, and two single-pole single-throw (SPST) switches. The in/anti-phase signal combination approach employing planar magic-Ts is adopted to attain bidirectional radiation patterns in the φ =90° plane with a simple structure. The proposed antenna can switch its beam using the SPST switches. The antenna is analyzed through simulations, and a prototype of the antenna is fabricated and tested to validate the concept. The proposed concept is found to be feasible; the prototype has an effective isotropic radiated power of +15.98dBm, radiated power level of +4.28dBm, and cross-polarization suppression of better than 15dB. The measured radiation patterns are in good agreement with the simulation results.
Arata TAKAHASHI Osamu TAKYU Hiroshi FUJIWARA Takeo FUJII Tomoaki OHTSUKI
Information exchange through a relay node is attracting attention for applying machine-to-machine communications. If the node demodulates the received signal in relay processing confidentially, the information leakage through the relay station is a problem. In wireless MIMO switching, the frequency spectrum usage efficiency can be improved owing to the completion of information exchange within a short time. This study proposes a novel wireless MIMO switching method for secure information exchange. An overloaded situation, in which the access nodes are one larger than the number of antennas in the relay node, makes the demodulation of the relay node difficult. The access schedule of nodes is required for maintaining the overload situation and the high information exchange efficiency. This study derives the equation model of the access schedule and constructs an access schedule with fewer time periods in the integer programming problem. From the computer simulation, we confirm that the secure capacity of the proposed MIMO switching is larger than that of the original one, and the constructed access schedule is as large as the ideal and minimum time period for information exchange completion.
Sahoko NAKAYAMA Andros TJANDRA Sakriani SAKTI Satoshi NAKAMURA
The phenomenon where a speaker mixes two or more languages within the same conversation is called code-switching (CS). Handling CS is challenging for automatic speech recognition (ASR) and text-to-speech (TTS) because it requires coping with multilingual input. Although CS text or speech may be found in social media, the datasets of CS speech and corresponding CS transcriptions are hard to obtain even though they are required for supervised training. This work adopts a deep learning-based machine speech chain to train CS ASR and CS TTS with each other with semisupervised learning. After supervised learning with monolingual data, the machine speech chain is then carried out with unsupervised learning of either the CS text or speech. The results show that the machine speech chain trains ASR and TTS together and improves performance without requiring the pair of CS speech and corresponding CS text. We also integrate language embedding and language identification into the CS machine speech chain in order to handle CS better by giving language information. We demonstrate that our proposed approach can improve the performance on both a single CS language pair and multiple CS language pairs, including the unknown CS excluded from training data.
Manabu MIKAMI Kohei MOTO Koichi SERIZAWA Hitoshi YOSHINO
Fifth generation mobile communication system (5G) mobile operators need to explore new use cases and/or applications together with vertical industries, the industries that are potential users of 5G, in order to fully exploit the new 5G capabilities in terms of its application. Vehicle-to-Everything (V2X) communications for platooning are considered to be one of new 5G use cases requiring low-latency and ultra-reliability are required. This paper presents our field trial of dynamic mode switching for 5G New Radio (NR) based V2X sidelink communications towards application to truck platooning. The authors build a field trial environment, for V2X communications of truck platooning, with actual large-size trucks and a prototype system employing 5G NR technologies, and performed some field trials in rural areas. In this paper, we introduce the 5G NR-V2X prototype system. Its most distinctive characteristic is that the prototype system is equipped with vehicle-to-vehicle (V2V) Direct communication radio interface (i.e., sidelink), in addition to the traditional radio interfaces between base station (BS) and user equipment (UE), i.e., downlink and uplink. Moreover, it is also most distinctive that the sidelink (SL) interface supports a new function of dynamic mode switching between two modes of BS In-Coverage mode (SL Mode-1) and BS Out-of-Coverage mode (SL Mode-2) in order to achieve seamless V2V communications between BS in-coverage area and BS out-of-coverage area. Then, we present the evaluation results on over-the-air latency performance on the V2V Direct communication of the prototype using SL dynamic mode switching with two experimental base station antenna sites in a public express highway environment towards application to truck platooning. The results demonstrate that our developed the SL dynamic mode switching achieves the seamless V2V Direct communications between in-coverage area and out-of-coverage area.
Thao-Nguyen TRUONG Ryousei TAKANO
Data parallelism is the dominant method used to train deep learning (DL) models on High-Performance Computing systems such as large-scale GPU clusters. When training a DL model on a large number of nodes, inter-node communication becomes bottle-neck due to its relatively higher latency and lower link bandwidth (than intra-node communication). Although some communication techniques have been proposed to cope with this problem, all of these approaches target to deal with the large message size issue while diminishing the effect of the limitation of the inter-node network. In this study, we investigate the benefit of increasing inter-node link bandwidth by using hybrid switching systems, i.e., Electrical Packet Switching and Optical Circuit Switching. We found that the typical data-transfer of synchronous data-parallelism training is long-lived and rarely changed that can be speed-up with optical switching. Simulation results on the Simgrid simulator show that our approach speed-up the training time of deep learning applications, especially in a large-scale manner.
Yucong ZHANG Stefan HOLST Xiaoqing WEN Kohei MIYASE Seiji KAJIHARA Jun QIAN
Loading test vectors and unloading test responses in shift mode during scan testing cause many scan flip-flops to switch simultaneously. The resulting shift switching activity around scan flip-flops can cause excessive local IR-drop that can change the states of some scan flip-flops, leading to test data corruption. A common approach solving this problem is partial-shift, in which multiple scan chains are formed and only one group of the scan chains is shifted at a time. However, previous methods based on this approach use random grouping, which may reduce global shift switching activity, but may not be optimized to reduce local shift switching activity, resulting in remaining high risk of test data corruption even when partial-shift is applied. This paper proposes novel algorithms (one optimal and one heuristic) to group scan chains, focusing on reducing local shift switching activity around scan flip-flops, thus reducing the risk of test data corruption. Experimental results on all large ITC'99 benchmark circuits demonstrate the effectiveness of the proposed optimal and heuristic algorithms as well as the scalability of the heuristic algorithm.
Robert Chen-Hao CHANG Wei-Chih CHEN Shao-Che SU
A switching-based Li-ion battery charger without any additional compensation circuit is proposed. The proposed charger adopts a dual-current sensor and a current window control to ensure system stability in different charge modes: trickle current, constant current, and constant voltage. The proposed Li-ion battery charger has less chip area and a simpler structure to design than a conventional Li-ion battery charger with pulse width modulation. Simulation with a 1000µF capacitor as the battery equivalent, a 5V input, and a 1A charge current resulted in a charging time of 1.47ms and a 91% power efficiency.
Tomoki MURAKAMI Koichi ISHIHARA Hirantha ABEYSEKERA Yasushi TAKATORI
Dense deployments of wireless local area network (WLAN) access points (APs) are accelerating to accommodate the massive wireless traffic from various mobile devices. The AP densification improves the received power at mobile devices; however, total throughput in a target area is saturated by inter-cell interference (ICI) because of the limited number of frequency channels available for WLANs. To substantially mitigate ICI, we developed and described a distributed smart antenna system (D-SAS) proposed for dense WLAN AP deployment in this paper. We also describe a system configuration based on our D-SAS approach. In this approach, the distributed antennas externally attached to each AP can be switched so as to make the transmit power match the mobile device's conditions (received power and packet type). The gains obtained by the antenna switching effectively minimize the transmission power required of each AP. We also describe experimental measurements taken in a stadium using a system prototype, the results show that D-SAS offers double the total throughput attained by a centralized smart antenna system (C-SAS).
Yifei SUN Yasunori KOBORI Anna KUWANA Haruo KOBAYASHI
This paper proposes a noise reduction technology for a specific frequency band that uses the pulse coding controlled method to automatically set the notch frequency in DC-DC switching converters of communication equipment. For reducing the power levels at the frequency and its harmonics in the switching converter, we often use a frequency-modulated clock. This paper investigates a technology that prevents modulated clock frequency noise from spreading into protected frequency bands; this proposed noise reduction technology does not distribute the switching noise into some specified frequency bands. The notch in the spectrum of the switching pulses is created by the Pulse Width Coding (PWC) method. In communication devices, the noise in the receiving signal band must be as small as possible. The notch frequency is automatically set to the frequency of the received signal by adjusting the clock frequency using the equation Fn = (P+0.5)Fck. Here Fn is the notch frequency, Fck is the clock frequency, and P is a positive integer that determines the noise spectrum location. Therefore, simply be setting the notch frequency to the received signal frequency can suppress the noise present. We confirm with simulations that the proposed technique is effective for noise reduction and notch generation. Also we implement a method of automatic switching between two receiving channels. The conversion voltage ratio in the pulse width coding method switching converter is analyzed and full automatic notch frequency generation is realized. Experiments on a prototype circuit confirm notch frequency generation.