Keyword Search Result

[Keyword] wireless local area network(23hit)

1-20hit(23hit)

  • A Novel Backoff Scheme and Its Throughput Analysis for Full Duplex MAC Protocols in Wireless LANs

    Shota SAKAKURA  Chikara FUJIMURA  Kosuke SANADA  Hiroyuki HATANO  Kazuo MORI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/03
      Vol:
    E103-B No:9
      Page(s):
    989-1001

    Wireless full duplex (FD) communication can double the point-to-point throughput. To fully realize the benefits of the FD technique in wireless local area networks (WLANs), it is important to design the medium access control (MAC) protocols for FD communications. In FD MAC protocols, when a node wins the channel contention and transmits a primary transmission, its destination node can start a secondary transmission triggered by the primary transmission. Each secondary transmitter transmits a data frame even if its backoff timer is not zero. However, the backoff scheme in the FD MAC protocols follows the conventional scheme based on the distributed coordination function (DCF). Therefore, the nodes with FD MAC initialize the contention window (CW) size to minimum CW (CWmin) after their successful secondary transmissions. Therefore, CW initialization in the FD MAC causes further collisions at stations (STAs), which degrades network throughput. This paper proposes a novel backoff scheme for FD MAC protocols. In the proposed scheme, the CW size and backoff timer are not initialized but kept the current value after secondary transmissions. The proposed scheme can mitigate frame collisions at STAs and increase FD-transmission opportunity in the network, and then enhance the throughput significantly. This paper presents comprehensive performance evaluation in simulations, including non-saturation and saturation conditions, and co-existence conditions with legacy half duplex (HD) STAs. For performance analysis, this paper establishes Markov-chain models for the proposed scheme. The analytical results show theoretically that the operation of the proposed scheme enhances network throughput. The simulation results and analytical results show the effectiveness of the proposed scheme.

  • A Reactive Reporting Scheme for Distributed Sensing in Multi-Band Wireless LAN System

    Rui TENG  Kazuto YANO  Yoshinori SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/02/18
      Vol:
    E103-B No:8
      Page(s):
    860-871

    A multi-band wireless local area network (WLAN) enables flexible use of multiple frequency bands. To efficiently monitor radio resources in multi-band WLANs, a distributed-sensing system that employs a number of stations (STAs) is considered to alleviate sensing constraints at access points (APs). This paper examines the distributed sensing that expands the sensing coverage area and monitors multiple object channels by employing STA-based sensing. To avoid issuing unnecessary reports, each STA autonomously judges whether it should make a report by comparing the importance of its own sensing result and that of the overheard report. We address how to efficiently collect the necessary sensing information from a large number of STAs. We propose a reactive reporting scheme that is highly scalable by the number of STAs to collect such sensing results as the channel occupancy ratio. Evaluation results show that the proposed scheme keeps the number of reports low even if the number of STAs increases. Our proposed sensing scheme provides large sensing coverage.

  • On the Feasibility of an Adaptive Movable Access Point System in a Static Indoor WLAN Environment

    Tomoki MURAKAMI  Shingo OKA  Yasushi TAKATORI  Masato MIZOGUCHI  Fumiaki MAEHARA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/01/10
      Vol:
    E101-B No:7
      Page(s):
    1693-1700

    This paper investigates an adaptive movable access point (AMAP) system and explores its feasibility in a static indoor classroom environment with an applied wireless local area network (WLAN) system. In the AMAP system, the positions of multiple access points (APs) are adaptively moved in accordance with clustered user groups, which ensures effective coverage for non-uniform user distributions over the target area. This enhances the signal to interference and noise power ratio (SINR) performance. In order to derive the appropriate AP positions, we utilize the k-means method in the AMAP system. To accurately estimate the position of each user within the target area for user clustering, we use the general methods of received signal strength indicator (RSSI) or time of arrival (ToA), measured by the WLAN systems. To clarify the basic effectiveness of the AMAP system, we first evaluate the SINR performance of the AMAP system and a conventional fixed-position AP system with equal intervals using computer simulations. Moreover, we demonstrate the quantitative improvement of the SINR performance by analyzing the ToA and RSSI data measured in an indoor classroom environment in order to clarify the feasibility of the AMAP system.

  • An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System Open Access

    Wei HONG  Shiwen HE  Haiming WANG  Guangqi YANG  Yongming HUANG  Jixing CHEN  Jianyi ZHOU  Xiaowei ZHU  Nianzhu ZHANG  Jianfeng ZHAI  Luxi YANG  Zhihao JIANG  Chao YU  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    262-276

    This paper presents an overview of the advance of the China millimeter-wave multiple gigabit (CMMG) wireless local area network (WLAN) system which operates in the 45 GHz frequency band. The CMMG WLAN system adopts the multiple antennas technologies to support data rate up to 15Gbps. During the progress of CMMG WLAN standardization, some new key technologies were introduced to adapt the millimeter-wave characteristic, including the usage of the zero correlation zone (ZCZ) sequence, a novel lower density parity check code (LDPC)-based packet encoding, and multiple input multiple output (MIMO) single carrier transmission. Extensive numerical results and system prototype test are also given to validate the performance of the technologies adopted by CMMG WLAN system.

  • Centralized Contention Based MAC for OFDMA WLAN

    Gunhee LEE  Cheeha KIM  

     
    LETTER-Information Network

      Pubricized:
    2017/06/06
      Vol:
    E100-D No:9
      Page(s):
    2219-2223

    The IEEE 802.11 wireless local area network (WLAN) is the most widely deployed communication standard in the world. Currently, the IEEE 802.11ax draft standard is one of the most advanced and promising among future wireless network standards. However, the suggested uplink-OFDMA (UL-OFDMA) random access method, based on trigger frame-random access (TF-R) from task group ax (TGax), does not yet show satisfying system performance. To enhance the UL-OFDMA capability of the IEEE 802.11ax draft standard, we propose a centralized contention-based MAC (CC-MAC) and describe its detailed operation. In this paper, we analyze the performance of CC-MAC by solving the Markov chain model and evaluating BSS throughput compared to other methods, such as DCF and TF-R, by computer simulation. Our results show that CC-MAC is a scalable and efficient scheme for improving the system performance in a UL-OFDMA random access situation in IEEE 802.11ax.

  • Spatial Co-Channel Overlap Mitigation through Channel Assignment in Dense WLAN: Potential Game Approach

    Shotaro KAMIYA  Koji YAMAMOTO  Takayuki NISHIO  Masahiro MORIKURA  Tomoyuki SUGIHARA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1094-1104

    Decentralized channel assignment schemes are proposed to obtain low system-wide spatial overlap regions in wireless local area networks (WLANs). The important point of channel assignment in WLANs is selecting channels with fewer contending stations rather than mitigating interference power due to its medium access control mechanism. This paper designs two potential game-based channel selection schemes, basically each access point (AP) selects a channel with smaller spatial overlaps with other APs. Owing to the property of potential games, each decentralized channel assignment is guaranteed to converge to a Nash equilibrium. In order that each AP selects a channel with smaller overlaps, two metrics are proposed: general overlap-based scheme yields the largest overlap reduction if a sufficient number of stations (STAs) to detect overlaps are available; whereas decomposed overlap-based scheme need not require such STAs, while the performance would be degraded due to the shadowing effect. In addition, the system-wide overlap area is analytically shown to be upper bounded by the negative potential functions, which derives the condition that local overlap reduction by each AP leads to system-wide overlap reduction. The simulation results confirm that the proposed schemes perform better reductions in the system-wide overlap area compared to the conventional interference power-based scheme under the spatially correlated shadowing effect. The experimental results demonstrate that the channel assignment dynamics converge to stable equilibria even in a real environment, particularly when uncontrollable APs exist.

  • MAC Protocol for Improving Throughput and Balancing Uplink/Downlink Throughput for Wireless Local Area Networks with Long Propagation Delays

    Takayuki NISHIO  Kaito FUNABIKI  Masahiro MORIKURA  Koji YAMAMOTO  Daisuke MURAYAMA  Katsuya NAKAHIRA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/11/25
      Vol:
    E100-B No:5
      Page(s):
    874-883

    Long-distance wireless local area networks (WLANs) are the key enablers of wide-area and low-cost access networks in rural areas. In a WLAN, the long propagation delay between an access point (AP) and stations (STAs) significantly degrades the throughput and creates a throughput imbalance because the delay causes unexpected frame collisions. This paper summarizes the problems caused in the medium access control (MAC) mechanism of the WLAN by a long propagation delay. We propose a MAC protocol for solving the delay-induced throughput degradation and the throughput imbalance between the uplink and the downlink in WLANs to address these problems. In the protocol, the AP extends NAV duration of CTS frame to protect an ACK frame and transmits its data frame to avoid delay induced frame collisions by piggybacking on the ACK frame transmission. We also provide a throughput model for the proposed protocol based on the Bianchi model. A numerical analysis using the proposed throughput model and simulation evaluation demonstrate that the proposed protocol increases the system throughput by 150% compared with that obtained using the conventional method, and the uplink throughput can be increased to the same level as the downlink throughput.

  • Rate Adaptation Based on Exposure Assessment Using Rectenna Output for WLAN Station Powered with Microwave Power Transmission

    Shota YAMASHITA  Koichi SAKAGUCHI  Yong HUANG  Koji YAMAMOTO  Takayuki NISHIO  Masahiro MORIKURA  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1785-1794

    This paper proposes a rate adaptation scheme (RAS) for a wireless local area network (WLAN) station powered with microwave power transmission (MPT). A WLAN station attempting to transmit data frames when exposed to microwave radiation for MPT, experiences a reduction in the physical (PHY) layer data rate because frames are lost even when the carrier sense mechanism is used. The key idea of the proposed scheme is to utilize the output of the rectenna used for receiving microwave power. Using rectenna output, a WLAN station based on the proposed scheme assesses whether the station is exposed to microwave radiation for MPT. Then, using historical data corresponding to the assessment result, the station selects an appropriate PHY data rate. The historical data are obtained from previous transmission results, e.g., historical data pertaining to the data frame loss ratio. The proposed scheme was implemented and verified through an experiment. Experimental results showed that the proposed scheme prevents the reduction in the PHY data rate, which is caused by the use of historical data stored in a single memory. Thus, the proposed scheme leads to an improvement in the WLAN throughput.

  • Maximum Likelihood Demodulators and Their Evaluations on Amplify-and-Forward Cooperative OFDM-Based Wireless LAN Systems

    Hayato FUKUZONO  Yusuke ASAI  Riichi KUDO  Koichi ISHIHARA  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2435-2448

    In this paper, we propose demodulators for the Golden and Alamouti codes in amplify-and-forward (AF) cooperative communication with one relay. The proposed demodulators output exact log likelihood ratios (LLRs) with recursion based on the Jacobian logarithm. The cooperative system with the proposed demodulator for the Golden code has the benefit of efficient data transmission, while the system for the Alamouti code has low demodulation complexity. Quantitative analyses of computational complexity of the proposed demodulators are conducted. The transmission performance for various relay location and power settings is evaluated on cooperative orthogonal frequency division multiplexing (OFDM)-based wireless local area network (LAN) systems. In evaluations, the optimal relay location and power settings are found. The cooperative system with the proposed demodulators for the Golden and Alamouti codes offers 1.5 and 1.9 times larger areas where 10.8 and 5.4Mbit/s can be obtained than a non-cooperative (direct) system in a typical office environment, respectively.

  • An Access-Point Aggregation Approach for Energy-Saving Wireless Local Area Networks

    Md. Ezharul ISLAM  Nobuo FUNABIKI  Toru NAKANISHI  Kan WATANABE  

     
    PAPER

      Vol:
    E96-B No:12
      Page(s):
    2986-2997

    Nowadays, with spreads of inexpensive small communication devices, a number of wireless local area networks (WLANs) have been deployed even in the same building for the Internet access services. Their wireless access-points (APs) are often independently installed and managed by different groups such as departments or laboratories in a university or a company. Then, a user host can access to multiple WLANs by detecting signals from their APs, which increases the energy consumption and the operational cost. It may also degrade the communication performance by increasing interferences. In this paper, we present an AP aggregation approach to solve these problems in multiple WLAN environments by aggregating deployed APs of different groups into limited ones using virtual APs. First, we formulate the AP aggregation problem as a combinatorial optimization problem and prove the NP-completeness of its decision problem. Then, we propose its heuristic algorithm composed of five phases. We verify the effectiveness through extensive simulations using the WIMNET simulator.

  • TXOP Exchange: A Mechanism for Cooperation in CSMA Networks

    Takayuki NISHIO  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  Narayan B. MANDAYAM  

     
    PAPER

      Vol:
    E95-B No:6
      Page(s):
    1944-1952

    Conventional mechanisms proposed for enhancing quality of service (QoS) in 802.11 networks suffer from a lack of backward compatibility and fairness with and to legacy devices. In this paper, we present a cooperative mechanism, called TXOP (transmission opportunity) Exchange, that provides a legacy-neutral solution in which only stations (STAs) participating in TXOP Exchange cooperatively use their available bandwidth to satisfy their required throughputs, while other legacy devices continue to get the same throughput performance as before. Specifically, we discuss the implementation of TXOP Exchange in legacy 802.11 networks. We show that this mechanism can be realized with minor modifications to the RTS (request-to-send) frames of only the STAs participating in TXOP Exchange and without any replacement of legacy access points or STAs. We show an example of a proportional fair algorithm for fair and efficient MAC cooperation using a Nash bargaining solution (NBS). A simulation study using a realistic simulator verifies that the TXOP Exchange mechanism ensures legacy neutrality and fair and efficient cooperation even when a large number of legacy STAs coexist.

  • Dynamic Contention Window Control Scheme in IEEE 802.11e EDCA-Based Wireless LANs

    B. A. Hirantha Sithira ABEYSEKERA  Takahiro MATSUDA  Tetsuya TAKINE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    56-64

    In the IEEE 802.11 MAC protocol, access points (APs) are given the same priority as wireless terminals in terms of acquiring the wireless link, even though they aggregate several downlink flows. This feature leads to a serious throughput degradation of downlink flows, compared with uplink flows. In this paper, we propose a dynamic contention window control scheme for the IEEE 802.11e EDCA-based wireless LANs, in order to achieve fairness between uplink and downlink TCP flows while guaranteeing QoS requirements for real-time traffic. The proposed scheme first determines the minimum contention window size in the best-effort access category at APs, based on the number of TCP flows. It then determines the minimum and maximum contention window sizes in higher priority access categories, such as voice and video, so as to guarantee QoS requirements for these real-time traffic. Note that the proposed scheme does not require any modification to the MAC protocol at wireless terminals. Through simulation experiments, we show the effectiveness of the proposed scheme.

  • Using Large-Scale FDTD Method to Obtain Precise Numerical Estimation of Indoor Wireless Local Area Network Office Environment

    Louis-Ray HARRIS  Takashi HIKAGE  Toshio NOJIMA  

     
    PAPER-Wireless LAN System

      Vol:
    E92-A No:9
      Page(s):
    2177-2183

    The Finite-Difference Time-Domain (FDTD) technique is presented in this paper as an estimation method for radio propagation prediction in large and complex wireless local area network (WLAN) environments. Its validity is shown by comparing measurements and Ray-trace method with FDTD data. The 2 GHz (802.11b/g) and 5 GHz (802.11a) frequency bands are used in both the calculations and experiments. The electric field (E-field) strength distribution has been illustrated in the form of histograms and cumulative ratio graphs. By using the FDTD method to vary the number of human bodies in the environment, the effects on E-field distribution due to human body absorption are also observed for 5 GHz WLAN design.

  • Preamble-Assisted Estimation for Frequency-Dependent I/Q Mismatch in Direct-Conversion OFDM Receivers

    Ming-Fu SUN  Terng-Yin HSU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2426-2432

    In direct-conversion orthogonal frequency division multiplexing (OFDM) receivers, the impact of frequency-dependent I/Q mismatch (IQ-M) with carrier frequency offset (CFO) must be considered. A preamble-assisted estimation is developed to circumvent the frequency-dependent IQ-M with CFO. The results of a simulation and an experiment show that the proposed method could provide good estimation efficiency and enhance the system performance. Moreover, the proposed scheme is compatible with current wireless local area network standards.

  • Frame Length Control for Wireless LANs in Fast Mobile Environments

    Ryoichi SHINKUMA  Takayuki YAMADA  Tatsuro TAKAHASHI  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1580-1588

    In this paper, we propose a novel solution to improving wireless channel quality of wireless local area networks (WLANs) in fast-mobile environments, which uses a media-access-control (MAC) layer approach: adaptive frame-length control and block acknowledgement (ACK). In fast-mobile environments, using short frame lengths can suppress channel estimation error and decrease frame errors. However, it increases the MAC overhead, resulting in decreased throughput. To solve this tradeoff, we combined block ACK, which is specified in IEEE802.11e as an optional function, with adaptive frame-length control. Although adaptive frame-length control considering this tradeoff has previously been investigated, the targets were different from WLANs using orthogonal frequency division multiplexing (OFDM) in fast-mobile environments. The MAC-overhead reduction using block ACK is suitable for our frame-length control because it does not change the frame format in the physical layer. Also, it is a new idea to use block ACK as a solution to improving channel quality in fast-mobile environments. In this paper, we evaluate our method through computer simulations and verify the effectiveness of adaptive frame-length control that can accommodate relative speeds.

  • A New Analytic Method for IEEE 802.11 Distributed Coordination Function

    Gang Uk HWANG  Min Young CHUNG  Yutae LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    239-246

    In this paper, we consider a network of N identical IEEE 802.11 DCF (Distributed Coordination Function) terminals with RTS/CTS mechanism, each of which is assumed to be saturated. For performance analysis, we propose a simple and efficient mathematical model to derive the statistical characteristics of the network such as the inter-transmission time of packets in the network and the service time (the inter-transmission time of successful packet transmissions) of the network. Numerical results and simulations are provided to validate the accuracy of our model and to study the performance of the IEEE 802.11 DCF network.

  • Performance Improvement for 802.11 Based Wireless Local Area Networks

    Liang ZHANG  Yantai SHU  Oliver YANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:4
      Page(s):
    910-917

    In a typical installation of an 802.11 based WLAN (Wireless Local Area Network), mobile hosts would access the network through APs (Access Points), even when two mobile stations communicate within the same WLAN. Effectively, all the packets in a WLAN are required to forward through the AP according to the MAC (Medium Access Control) layer protocol. Since the AP has the same priority as the other mobile stations to access the channel, the AP usually becomes a bottleneck in WLANs and the network performance degrades significantly. In this paper, we propose a new MAC layer protocol for WLANs in order to improve the throughput performance. Theoretical analysis and simulation results show that our new protocol works much better in WLAN than the standard DCF.

  • Evaluation of BER in Bluetooth Wireless Systems Disturbed by Radiated Noise from Spread Spectrum Clock Systems

    Takahide MURAKAMI  Yasushi MATSUMOTO  Katsumi FUJII  Akira SUGIURA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E89-B No:10
      Page(s):
    2897-2904

    Frequency-modulated clock signals are widely used in personal computers to reduce the amplitude of the clock harmonic noise, as measured using an electromagnetic interference (EMI) test receiver. However, the power of the clock harmonics is not decreased with this technique called spread spectrum clocking (SSC). Hence, the impact of the harmonics of a frequency-modulated clock on the bit error rate (BER) and packet error rate (PER) of a Bluetooth system is theoretically analyzed. In addition, theoretical analysis covers the effectiveness of a frequency hopping spread spectrum (FH-SS) scheme and forward error correction (FEC) in mitigating the degradation in the BER and PER caused by clock harmonic interference. The results indicate that the BER and PER strongly depend on the modulating frequency and maximum frequency deviation of the clock harmonic. They also indicate that radiated clock harmonics may considerably degrade the BER and PER when a Bluetooth receiver is very close to a personal computer. Frequency modulating the clock harmonics slightly reduces the BER while it negligibly reduces the PER.

  • Channel Estimation for OFDM-Based WLANs in the Presence of Wiener Phase Noise and Residual Frequency Offset

    Yong-Hwa KIM  Jong-Ho LEE  Seong-Cheol KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1709-1712

    In orthogonal frequency-division multiplexing (OFDM)-based wireless local area networks (WLANs), phase noise (PHN) and residual frequency offset (RFO) can cause the common phase error (CPE) and the inter-carrier interferences (ICI), which seriously degrade the performance of systems. In this letter, we propose a combined pilot symbol assisted and decision-directed channel estimation scheme based on the least-squares (LS) and the maximum-likelihood (ML) algorithms. Simulation results present that the proposed scheme significantly improves the performance of OFDM-based WLANs.

  • Support of Efficient Route Discovery in Mobile Ad Hoc Access Networks

    Chun-Yen HSU  Jean-Lien C. WU  Shun-Te WANG  

     
    PAPER-Network

      Vol:
    E89-B No:4
      Page(s):
    1252-1262

    The Public Wireless Local Area Network (PWLAN) is an emerging service for wireless access to the Internet. However, the service coverage of the PWLAN is limited by the deployment of access points (APs) because only those who stay near the AP can access the PWLAN. A feasible way of extending the service coverage of a PWLAN is to deploy mobile ad hoc access networks (MAHANs) so that users who are not in an AP's radio coverage area can send their packets to the AP in a multihop manner. However, in a MAHAN, mobile nodes that intend to access the Internet have to discover routes to the AP first, which may result in considerable bandwidth cost. In this paper, we propose the Appointed BrOadcast (ABO) method to reduce the cost of route discovery in MAHANs. Using the ABO method can achieve this goal on the basis of packet overhearing. Functions that are necessary for network and data link layers to employ the ABO method are also discussed. Simulation results show that using the ABO method can significantly reduce the cost on route discoveries. Due to the widespread use of legacy IEEE 802.11 nodes, the problem of how ABO-enhanced and legacy IEEE 802.11 nodes can coexist in a MAHAN is also discussed.

1-20hit(23hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.