Keiji GOTO Toru KAWANO Ryohei NAKAMURA
This paper presents a scatterer information estimation method for both E- and H-polarizations based on a time-domain saddle-point technique (TD-SPT). The method utilizes numerical data of the response waveforms of the reflected geometric optical ray (RGO) series, which constitute the backward transient scattering field components when a line source and an observation point are at the same location. A scatterer selected in the paper is a two-dimensional (2-D) coated cylinder. The three types of scatterer information are the relative permittivity of a coating medium layer and its thickness, and the outer radius of a coated cylinder. Specifically, the scatterer information estimation formulas are derived by applying the TD-SPT represented in RGO series to the amplitude intensity ratios (AIRs) of adjacent RGO components. By focusing on the analytical results that the AIRs are independent of polarization, we analytically clarify that all the estimation formulas derived here denote polarization independence. The estimates are obtained by substituting numerical data of the peaks of the response waveforms of the RGO components and their arrival times, as well as numerical parameters of a pulse source, into the estimation formulas and performing iterative calculations. We derive approximations to the estimation errors that are useful in quantitatively evaluating the errors of the estimates. The effectiveness of the scatterer information estimation method is substantiated by comparing the estimates with the set values. The polarization independence of the estimation formulas is validated numerically by contrasting the estimates for E- and H-polarizations. The estimation errors are discussed using the approximations to the errors of the estimates when a line source and an observation point are at the same location. Thereafter, the discrepancies that arise between the estimation errors when a line source and an observation point are at different locations are discussed. The methods to control the estimation accuracy and the computational time are also discussed.
Ryo KUMAGAI Ryosuke SUGA Tomoki UWANO
In this paper, a single-layer circular polarizer for linear polarized horn antenna is proposed. The multiple reflected waves between the aperture and array provide desired phase differences between vertical and horizontal polarizations. The measured gain of the fabricated antenna is 14.4 dBic and the half power beamwidths of the vertical polarization are 28 and 24 deg. and those of the horizontal polarization are 31 and 23 degrees in the vertical and horizontal planes. The polarizer has a low impact on the gain and beamwidth of the primary horn antenna and their changes are within 1.7 dB and 10 degrees. The 3 dB fractional bandwidth of the axial ratio is measured to be 1.4%.
In this research, we investigated the digital/analog-operation utilizing ferroelectric nondoped HfO2 (FeND-HfO2) as a blocking layer (BL) in the Hf-based metal/oxide/nitride/oxide/Si (MONOS) nonvolatile memory (NVM), so called FeNOS NVM. The Al/HfN0.5/HfN1.1/HfO2/p-Si(100) FeNOS diodes realized small equivalent oxide thickness (EOT) of 4.5 nm with the density of interface states (Dit) of 5.3 × 1010 eV-1cm-2 which were suitable for high-speed and low-voltage operation. The flat-band voltage (VFB) was well controlled as 80-100 mV with the input pulses of ±3 V/100 ms controlled by the partial polarization of FeND-HfO2 BL at each 2-bit state operated by the charge injection with the input pulses of +8 V/1-100 ms.
Taiki ARAKAWA Kazuhiro YAMAGUCHI Kazunori KAMEDA Shinichi FURUKAWA
We study the device length and/or band characteristics examined by two coupling analysis methods for our proposed fiber-type polarization splitter (FPS) composed of single mode fiber and polarization maintaining fiber. The first method is based on the power transition characteristics of the coupled-mode theory (CMT), and the second, a more accurate analysis method, is based on improved fundamental mode excitation (IFME). The CMT and IFME were evaluated and investigated with respect to the device length and bandwidth characteristics of the FPS. In addition, the influence of the excitation point shift of the fundamental mode, which has not been almost researched so far, is also analysed by using IFME.
Hidenori YUKAWA Yu USHIJIMA Toru TAKAHASHI Toru FUKASAWA Yoshio INASAWA Naofumi YONEDA Moriyasu MIYAZAKI
A T-junction orthomode transducer (OMT) is a waveguide component that separates two orthogonal linear polarizations in the same frequency band. It has a common circular waveguide short-circuited at one end and two branch rectangular waveguides arranged in opposite directions near the short circuit. One of the advantages of a T-junction OMT is its short axial length. However, the two rectangular ports, which need to be orthogonal, have different levels of performance because of asymmetry. We therefore propose a uniaxially symmetrical T-junction OMT, which is configured such that the two branch waveguides are tilted 45° to the short circuit. The uniaxially symmetrical configuration enables same levels of performance for the two ports, and its impedance matching is easier compared to that for the conventional configuration. The polarization separation principle can be explained using the principles of orthomode junction (OMJ) and turnstile OMT. Based on calculations, the proposed configuration demonstrated a return loss of 25dB, XPD of 30dB, isolation of 21dB between the two branch ports, and loss of 0.25dB, with a bandwidth of 15% in the K band. The OMT was then fabricated as a single piece via 3D printing and evaluated against the calculated performance indices.
Joong-Won SHIN Masakazu TANUMA Shun-ichiro OHMI
In this research, we investigated the threshold voltage (VTH) control by partial polarization of metal-ferroelectric-semiconductor field-effect transistors (MFSFETs) with 5 nm-thick nondoped HfO2 gate insulator utilizing Kr-plasma sputtering for Pt gate electrode deposition. The remnant polarization (2Pr) of 7.2 μC/cm2 was realized by Kr-plasma sputtering for Pt gate electrode deposition. The memory window (MW) of 0.58 V was realized by the pulse amplitude and width of -5/5 V, 100 ms. Furthermore, the VTH of MFSFET was controllable by program/erase (P/E) input pulse even with the pulse width below 100 ns which may be caused by the reduction of leakage current with decreasing plasma damage.
Midori NAGASAKA Taiki ARAKAWA Yutaro MOCHIDA Kazunori KAMEDA Shinichi FURUKAWA
In this study, we discuss a structure that realizes a wideband polarization splitter comprising fiber 1 with a single core and fiber 2 with circular pits, which touch the top and bottom of a single core. The refractive index profile of the W type was adopted in the core of fiber 1 to realize the wideband. We compared the maximum bandwidth of BW-15 (bandwidth at an extinction ratio of -15dB) for the W type obtained in this study with those (our previous results) of BW-15 for the step and graded types with cores and pits at the same location; this comparison clarified that the maximum bandwidth of BW-15 for the W type is 5.22 and 4.96 times wider than those of step and graded types, respectively. Furthermore, the device length at the maximum bandwidth improved, becoming slightly shorter. The main results of the FPS in this study are all obtained by numerical analysis based on our proposed MM-DM (a method that combines the multipole method and the difference method for the inhomogeneous region). Our MM-DM is a quite reliable method for high accuracy analysis of the FPS composed of inhomogeneous circular regions.
Hiroshi HASHIGUCHI Takumi NISHIME Naobumi MICHISHITA Hisashi MORISHITA Hiromi MATSUNO Takuya OHTO Masayuki NAKANO
This paper presents dual bands and dual polarization reflectarrays for 5G millimeter wave applications. The frequency bands of 28GHz and 39GHz are allocated for 5G to realize high speed data transmission. However, these high frequency bands create coverage holes in which no link between base station and receivers is possible. Reflectarray has gained attention for reducing the size and number of coverage holes. This paper proposes a unit cell with swastika and the patch structure to construct the dual bands reflectrray operating at 28GHz and 39GHz by supercell. This paper also presents the detailed design procedure of the dual-bands reflectarray by supercell. The reflectarray is experimentally validated by a bistatic radar cross section measurement system. The experimental results are compared with simulation and reflection angle agreement is observed.
The phenomenon known as social polarization, in which a social group splits into two or more groups, can cause division of the society by causing the radicalization of opinions and the spread of misinformation, is particularly significant in online communities. To develop technologies to mitigate the effects of polarization in online social networks, it is necessary to understand the mechanism driving its occurrence. There are some models of social polarization in which network structure and users' opinions change, based on the quantified opinions held by the users of online social networks. However, they are based on the interaction between users connected by online social networks. Current recommendation systems offer information from unknown users who are deemed to have similar interests. We can interpret this situation as being yielded non-local effects brought on by the network system, it is not based on local interactions between users. In this paper, based on the spectral graph theory, which can describe non-local effects in online social networks mathematically, we propose a model of polarization that user behavior and network structure change while influencing each other including non-local effects. We investigate the characteristics of the proposed model. Simultaneously, we propose an index to evaluate the degree of network polarization quantitatively, which is needed for our investigations.
Naoki HIRAKURA Masaki AIDA Konosuke KAWASHIMA
While social media is now used by many people and plays a role in distributing information, it has recently created an unexpected problem: the actual shrinkage of information sources. This is mainly due to the ease of connecting people with similar opinions and the recommendation system. Biased information distribution promotes polarization that divides people into multiple groups with opposing views. Also, people may receive only the seemingly positive information that they prefer, or may trigger them into holding onto their opinions more strongly when they encounter opposing views. This, combined with the characteristics of social media, is accelerating the polarization of opinions and eventually social division. In this paper, we propose a model of opinion formation on social media to simulate polarization. While based on the idea that opinion neutrality is only relative, this model provides new techniques for dealing with polarization.
Masato YOSHIDA Kozo SATO Toshihiko HIROOKA Keisuke KASAI Masataka NAKAZAWA
We present detailed measurements and analysis of the guided acoustic wave Brillouin scattering (GAWBS)-induced depolarization noise in a multi-core fiber (MCF) used for a digital coherent optical transmission. We first describe the GAWBS-induced depolarization noise in an uncoupled four-core fiber (4CF) with a 125μm cladding and compare the depolarization noise spectrum with that of a standard single-mode fiber (SSMF). We found that off-center cores in the 4CF are dominantly affected by higher-order TRn,m modes rather than the TR2,m mode unlike in the center core, and the total power of the depolarization noise in the 4CF was almost the same as that in the SSMF. We also report measurement results for the GAWBS-induced depolarization noise in an uncoupled 19-core fiber with a 240μm cladding. The results indicate that the amounts of depolarization noise generated in the cores are almost identical. Finally, we evaluate the influence of GAWBS-induced polarization crosstalk (XT) on a coherent QAM transmission. We found that the XT limits the achievable multiplicity of the QAM signal to 64 in a transoceanic transmission with an MCF.
Tomoki KANEKO Hirobumi SAITO Akira HIROSE
This paper proposes an analytical method to design septum-type polarizers by assuming a polarizer as a series of four septum elements with a short ridge-waveguide approximation. We determine parameters of respective elements in such a manner that, at the center frequency, the reflection coefficient of the first element is equal to that of the second one, the reflection of the third one equals to that of the forth, and the electrical lengths of the first, second and third elements are 90 deg. We name this method the Short Ridge-waveguide Approximation Method (SRAM). We fabricated an X-band polarizer, which achieves a cross polarization discrimination (XPD) value of 40.7-64.1 dB over 8.0-8.4 GHz, without any numerical optimization.
Yuya TANAKA Yuki TAZO Hisao ISHII
In vacuum-deposited film composed of organic polar molecules, polarization charges appear on the film surface owing to spontaneous orientation of the molecule. Because its density (σpol) determines an amount of accumulation charge (σacc) in organic light-emitting diodes and output power in polar molecular-based vibrational energy generators (VEGs), control of molecular orientation is highly required. Recently, several groups have reported that dipole-dipole interaction between polar molecules induces anti-parallel orientation which does not contribute to σpol. In other words, perturbation inducing the attenuation of the dipole interaction is needed to enhance σpol. In this study, to investigate an effect of light irradiation on σpol, we prepared 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) film under illumination during its deposition, and evaluated the σacc in TPBi-based bilayer device, which equals to σpol. We found that the σacc was increased by light irradiation, indicating that average orientation of TPBi is enhanced. These results suggest that light irradiation during device fabrication is promising process for organic electronic devices including polar molecule-based VEGs.
Toshiki YAMADA Takahiro KAJI Chiyumi YAMADA Akira OTOMO
We previously developed a new terahertz (THz) wave detection method that utilizes the effect of nonlinear optical (NLO) polymers. The new method provided us with a gapless detection, a wide detection bandwidth, and a simpler optical geometry in the THz wave detection. In this paper, polarization dependences in THz wave detection by the Stark effect were investigated. The projection model was employed to analyze the polarization dependences and the consistency with experiments was observed qualitatively, surely supporting the use of the first-order Stark effect in this method. The relations between THz wave detection by the Stark effect and Stark spectroscopy or electroabsorption spectroscopy are also discussed.
Shota ISHIMURA Kosuke NISHIMURA Yoshiaki NAKANO Takuo TANEMURA
Coherent transceivers are now regarded as promising candidates for upgrading the current 400Gigabit Ethernet (400GbE) transceivers to 800G. However, due to the complicated structure of a dual-polarization IQ modulator (DP-IQM) with its bulky polarization-beam splitter/comber (PBS/PBC), the increase in the transmitter size and cost is inevitable. In this paper, we propose a compact PBS/PBC-free transmitter structure with a straight-line configuration. By using the concept of polarization differential modulation, the proposed transmitter is capable of generating a DP phase-shift-keyed (DP-PSK) signal, which makes it directly applicable to the current coherent systems. A detailed analysis of the system performance reveals that the imperfect equalization and the bandwidth limitation at the receiver are the dominant penalty factors. Although such a penalty is usually unacceptable in long-haul applications, the proposed transmitter can be attractive due to its significant simplicity and compactness for short-reach applications, where the cost and the footprint are the primary concerns.
Narihiro NAKAMOTO Toru TAKAHASHI Toru FUKASAWA Naofumi YONEDA Hiroaki MIYASHITA
This paper proposes a dual linear-polarized open-ended waveguide subarray designed for use in phased array antennas. The proposed subarray is a one-dimensional linear array that consists of open-ended waveguide antenna elements and suspended stripline feed networks to realize vertical and horizontal polarizations. The antenna includes a novel suspended stripline-to-waveguide transition that combines double- and quad-ridge waveguides to minimize the size of the transition and enhance the port isolation. Metal posts are installed on the waveguide apertures to eliminate scan-blindness. Prototype subarrays are fabricated and tested in an array of 16 subarrays. The experimental tests and numerical simulations indicate that the prototype subarray offers a low reflection coefficient of less than -11.4dB, low cross-polarization of less than -26dB, and antenna efficiency above 69% in the frequency bandwidth of 14%.
Tomoki KANEKO Noriyuki KAWANO Yuhei NAGAO Keishi MURAKAMI Hiromi WATANABE Makoto MITA Takahisa TOMODA Keiichi HIRAKO Seiko SHIRASAKA Shinichi NAKASUKA Hirobumi SAITO Akira HIROSE
This paper reports our new communication components and downlink tests for realizing 2.65Gbps by utilizing two circular polarizations. We have developed an on-board X-band transmitter, an on-board dual circularly polarized-wave antenna, and a ground station. In the on-board transmitter, we optimized the bias conditions of GaN High Power Amplifier (HPA) to linearize AM-AM performance. We have also designed and fabricated a dual circularly polarized-wave antenna for low-crosstalk polarization multiplexing. The antenna is composed of a corrugated horn antenna and a septum-type polarizer. The antenna achieves Cross Polarization Discrimination (XPD) of 37-43dB in the target X-band. We also modify an existing 10m ground station antenna by replacing its primary radiator and adding a polarizer. We put the polarizer and Low Noise Amplifiers (LNAs) in a cryogenic chamber to reduce thermal noise. Total system noise temperature of the antenna is 58K (maximum) for 18K physical temperature when the angle of elevation is 90° on a fine winter day. The dual circularly polarized-wave ground station antenna has 39.0dB/K of Gain - system-noise Temperature ratio (G/T) and an XPD higher than 37dB. The downlinked signals are stored in a data recorder at the antenna site. Afterwards, we decoded the signals by using our non-real-time software demodulator. Our system has high frequency efficiency with a roll-off factor α=0.05 and polarization multiplexing of 64APSK. The communication bits per hertz corresponds to 8.41bit/Hz (2.65Gbit/315MHz). The system is demonstrated in orbit on board the RAPid Innovative payload demonstration Satellite (RAPIS-1). RAPIS-1 was launched from Uchinoura Space Center on January 19th, 2019. We decoded 1010 bits of downlinked R- and L-channel signals and found that the downlinked binary data was error free. Consequently, we have achieved 2.65Gbps communication speed in the X-band for earth observation satellites at 300 Mega symbols per second (Msps) and polarization multiplexing of 64APSK (coding rate: 4/5) for right- and left-hand circular polarizations.
Zejun ZHANG Yasuhide TSUJI Masashi EGUCHI Chun-ping CHEN
A compact optical polarization converter (PC) based on slot waveguide has been proposed in this study. Utilizing the high refractive index contrast between a Si waveguide and SiO2 cladding on the silicon-on-insulator platform, the light beam can be strongly confined in a slot waveguide structure. The proposed PC consists of a square waveguide and an L-shape cover waveguide. Since the overall structure is symmetrically distributed along the axis rotated 45-degree from the horizontal direction, the optical axis of this PC lies in the direction with equi-angle from two orthogonally polarized modes of the input and output ends, which leads to a high polarization conversion efficiency (PCE). 3D FDTD simulation results illustrate that a TE-to-TM mode conversion is achieved with a device length of 8.2 µm, and the PCE exceeds 99.8%. The structural tolerance and wavelength dependence of the PC have also been discussed in detail.
Minseok KIM Tatsuki IWATA Shigenobu SASAKI Jun-ichi TAKADA
In radio channel measurements and modeling, directional scanning via highly directive antennas is the most popular method to obtain angular channel characteristics to develop and evaluate advanced wireless systems for high frequency band use. However, it is often insufficient for ray-/cluster-level characterizations because the angular resolution of the measured data is limited by the angular sampling interval over a given scanning angle range and antenna half power beamwidth. This study proposes the sub-grid CLEAN algorithm, a novel technique for high-resolution multipath component (MPC) extraction from the multi-dimensional power image, so called double-directional angular delay power spectrum. This technique can successfully extract the MPCs by using the multi-dimensional power image. Simulation and measurements showed that the proposed technique could extract MPCs for ray-/cluster-level characterizations and channel modeling. Further, applying the proposed method to the data captured at 58.5GHz in an atrium entrance hall environment which is an indoor hotspot access scenario in the fifth generation mobile system, the multipath clusters and corresponding scattering processes were identified.
This paper proposes a dual-band dual-rectangular-loop circular polarization antenna for Global Navigation Satellite Systems (GNSSs). The proposed antenna combines two large outer rectangular loops with two small inner loops. Each large outer loop is connected to its corresponding small inner rectangular loop. Each loop has gaps located symmetrically with respect to a feed point to produce Right Handed Circular Polarization (RHCP). The gap position and the shape of the rectangular loops are very important to adjust both the impedance matching and circular polarization characteristics. The proposed antenna offers dual-band Voltage Standing Wave Ratio (VSWR) and Axial Ratio (AR) frequency characteristics that include the L1 (1575.42 MHz) and L2 (1227.60 MHz) bands. The antenna gains exceed 8.7 dBi. Broad AR elevation patterns are obtained. These antenna characteristics are well suited to precise positioning.