Takayuki YAMADA Ryoichi SHINKUMA Tatsuro TAKAHASHI
In conventional road-vehicle communication systems, user terminals in the vehicles have to directly connect to wireless access points (APs). However, vehicle speeds are so fast that the channel condition between the terminals and the APs constantly changes because of changing path loss and time-varying fading. In this paper, to compensate for such deterioration, we propose to reduce the relative speed between the terminals and the APs by an inter-vehicle packet relay technique. If a terminal can send data via other vehicles running at lower speeds, the relative speed will decrease, which suppresses the dynamic range of path loss and deterioration by fading. We, first, validate our method by a numerical analysis using a statistical path-loss model. The numerical analysis verifies that our method is able to suppress deterioration caused by path loss and time-varying fading. However, in the numerical analysis, geometric propagation of paths is not considered; instantaneous and rapid loss changes are not considered. Therefore, we evaluate our method by computer simulations using a geometric propagation model. In the simulations, phase difference between multiple paths and loss fluctuation within one frame duration affect the performance. From the results of the simulations, we validate our method. Furthermore, we investigate the combination of our method and the selection diversity technique, which can suppress channel fluctuation and may enhance the performance of our method. Moreover, we measure interference in the overlapped zone between two AP areas. From the measurement, we show that our packet relays do not cause a problem in interference between areas.
Hiroshi IWAI Tsutomu SAKATA Atsushi YAMAMOTO Kei SAKAGUCHI
This paper presents an investigation of radio-wave propagation characteristics in the 5 GHz band in a residential two-story house. We investigated the 3-D angular spectra of incident waves when a transmitter and a receiver were situated on the first and second floors, respectively. First of all, correlation in the measured "home environment" containing furniture such as beds, a sofa and tables was determined to confirm a quasi-static environment. Then, 3-D angular spectra measurements were performed by using an eight-element Yagi-Uda antenna as a receiving antenna. Furthermore, the 4-by-4 MIMO channel capacity at each elevation angle was estimated by using elevation angular spectra and the propagation characteristics between the first and second floors were evaluated. The results indicated that the channel capacity in the elevation direction was strongly influenced by the direction of the transmitting antenna.
Yong-Goo KIM Yungho CHOI Yoonsik CHOE
The error resilient entropy coding (EREC) provides efficient resynchronization method to the coded bitstream, which might be corrupted by transmission errors. The technique has been given more prominence, nowadays, because it achieves fast resynchronization without sizable overhead, and thereby provides graceful quality degradation according to the network conditions. This paper presents a novel framework to analyze the performance of EREC in terms of the error probability in decoding a basic resynchronization unit (RU) for various error prone networks. In order to show the feasibility of the proposed framework, this paper also proposes a novel EREC algorithm based on the slightly modified H.263 bitstream syntax. The proposed scheme minimizes the effect of errors on low frequency DCT coefficients and incorporates near optimal channel-matched searching pattern (SP), which guarantees the best possible quality of reproduced video. Given the number of bits generated for each RU, the near optimal SP is produced by the proposed iterative deterministic partial SP update method, which reduces the complexity of finding optimal solution, O((N-1)!), to O(m·N2). The proposed EREC algorithm significantly improves the decoded video quality, especially when the bit error rate is in the rage of 10-3-10-4. Up to 5 dB enhancement of the PSNR value was observed in a single video frame.
Manabu YOSHIKAWA Takayoshi YOKOYAMA
This study investigates a new transmission method of light from a point source in a multimode graded-index fiber. The position of the point source is arranged along with a mode pattern to precisely determine the location of an output point image. Propagation performance is observed in an experiment and estimated by simulation.
YongCheol SUH Ryosuke SHIBASAKI
We developed a comprehensive simulation system for evaluating satellite-based navigation services in highly built-up areas; the system can accommodate Global Positioning System (GPS) multipath effects, as well as line-of-sight (LOS) and dilution of position (DOP) issues. For a more realistic simulation covering multipath and diffracted signal propagations, a 3D-ray tracing method was combined with a satellite orbit model and three-dimensional (3D) geographic information system (GIS) model. An accuracy estimation model based on a 3D position determination algorithm with a theoretical delay-locked loop (DLL) correlation computation could measure the extent to which multipath mitigation improved positioning accuracy in highly built-up areas. This system could even capture the multipath effect from an invisible satellite, one of the greatest factors in accuracy deterioration in highly built-up areas. Further, the simulation results of satellite visibility, DOP, and multipath occurrence were mapped to show the spatial distribution of GPS availability. By using object-oriented programming, our simulation system can be extended to other global navigation satellite systems (GNSSs) simply by adding the orbital information of the corresponding GNSS satellites. We demonstrated the applicability of our simulation system in an experimental simulation for Shinjuku, an area of Tokyo filled with skyscrapers.
Kyung-Soo WOO Hyun-Il YOO Yeong-Jun KIM Kyu-In LEE Chang-Hwan PARK Heesoo LEE Hyun-Kyu CHUNG Yong-Soo CHO
In this letter, the effect of a propagation delay resulting from the use of an OFDM system with a transparent mobile multi-hop relay (MMR) is initially analyzed. Then, a least square (LS) channel estimation technique for the OFDM system with throughput enhancement (TE) MMR or cooperative MMR is proposed. It is demonstrated by computer simulation that the proposed LS channel estimation technique for OFDM systems with transparent MMR is superior to the conventional technique in terms of mean square error (MSE) and bit error rate (BER).
Terng-Ren HSU Chien-Ching LIN Terng-Yin HSU Chen-Yi LEE
For more efficient data transmissions, a new MLP/BP-based channel equalizer is proposed to compensate for multi-path fading in wireless applications. In this work, for better system performance, we apply the soft output and the soft feedback structure as well as the soft decision channel decoding. Moreover, to improve packet error rate (PER) and bit error rate (BER), we search for the optimal scaling factor of the transfer function in the output layer of the MLP/BP neural networks and add small random disturbances to the training data. As compared with the conventional MLP/BP-based DFEs and the soft output MLP/BP-based DFEs, the proposed MLP/BP-based soft DFEs under multi-path fading channels can improve over 3-0.6 dB at PER=10-1 and over 3.3-0.8 dB at BER=10-3.
Yueguang BIAN Youzheng WANG Jing WANG
In this letter, we propose a new modification to the belief propagation (BP) decoding algorithm for Finite-Geometry low-density parity-check (LDPC) codes. The modification is based on introducing feedback into the iterative process, which can break the oscillations of bit log-likelihood ratio (LLR) values. Simulations show that, with a given maximum iteration, the "feedback BP" (FBP) algorithm can achieve better performance than the conventional belief propagation algorithm.
Kazunori YAMANAKA Masafumi SHIGAKI Shin-ichi YAMAMOTO Shin-ichi KOZONO
We report on a subsystem of electromagnetic wave radiation and propagation estimation using high-Tc superconducting (HTS) receiving filters for S band. The subsystem, comprised of HTS filters, a rubidium standard signal generator (Rb SSG), a global positioning system (GPS) unit, etc., was used to evaluate the electromagnetic-wave (EMW) intensities, frequencies, the frequency interferences and the ground positions where the EM are measured. The developed subsystem showed high frequency selectivity for S band by using the HTS filters. Furthermore, we verified that the subsystem with the HTS filters operated on the moving car.
This paper surveys and introduces propagation studies and models that are expected to contribute to the development of broadband wireless systems. The survey focused on theory-based propagation models, experimental measurement data useful for modeling, and transmission characteristic evaluations using propagation models. The survey did not attempt to cover all papers in the research fields, but rather took key papers for various relevant subjects and described them in some detail. The basic characteristics of multipath propagation are summarized from the viewpoints of narrow-band (NB), wide-band (WB), and ultra wide-band (UWB). Recent studies on spatio-temporal propagation models and the relationship between models and systems are introduced. To clarify the relationship between OFDM, which is a representative of wideband data transmission schemes, and wave propagation factors, problems due to large delay spread and large Doppler spread are highlighted. Finally, studies on UWB propagation measurement and propagation models are introduced.
Jan-Ou WU Chia-Chun TSAI Chung-Chieh KUO Trong-Yen LEE
In nature an unbalanced clock tree exists in a SoC because the clock sinks of IPs have distinct input capacitive loads and internal delays. The construction of a bottom-up RLC clock tree with minimal clock delay and zero skew is crucial to ensure good SoC performance. This study proves that an RLC clock tree construction always has no zero skew owing to skew upward propagation. Specifically, this study proposes the insertion of two unit-size buffers associated with the binary search for a tapping point into each pair of subtrees to interrupt the non-zero skew upward propagation. This technique enables reliable construction of a buffered RLC clock tree with zero skew. The effectiveness of the proposed approach is demonstrated by assessing benchmarks.
Shinya MIYAMOTO Kenta KASAI Kohichi SAKANIWA
Decoding performance of LDPC (Low-Density Parity-Check) codes is highly dependent on the degree distributions of the Tanner graphs which define the LDPC codes. We compare two LDPC code ensembles, one has a uniform degree distribution and the other a non-uniform one over a BEC (Binary Erasure Channel) and a BSC (Binary Symmetric Channel) thorough DE (Density Evolution). We then derive sufficient conditions on the erasure probability of a BEC and the error probability of a BSC, under which the LDPC code ensembles with uniform degree distributions outperform those with non-uniform degree distributions.
Lightwave switching is discussed with a cascaded connection of optical couplers with light intensity control elements. By employing wavelength-selective amplifiers such as a waveguide-type Raman amplifier, all-optical wavelength-selective switching can be realized. We discuss analytically using coupled-mode theory that the lightwave switching is feasible by controlling the intensity of propagating lightwave. The switching operation is verified numerically using finite-difference beam-propagation method. As a result, the expected operation is realized and some characteristics involved with dependencies of wavelength and phase are also investigated. A preliminary experiment using attenuators, beam splitters and mirrors is also described to verify the switching operation with only light-intensity control in interferometers.
Fatih Omer ILDAY Axel WINTER Franz X. KARTNER Miltcho B. DANAILOV
Next generation free electron lasers aim to generate x-ray pulses with pulse durations down to 30 fs, and possibly even sub-fs. Synchronization of various stages of the accelerator and the probe laser system to the x-ray pulses with stability on the order of the pulse width is necessary to make maximal use of this capability. We are developing an optical timing synchronization system in order to meet this challenge. The scheme is based on generating a train of short optical pulses, with a precise repetition frequency, from a mode-locked laser oscillator and distributed via length-stabilized optical fibers to points requiring synchronization. The timing information is embedded in the repetition frequency and its harmonics. A significant advantage of the optical synchronization system is that multiple mode-locked Ti:sapphire seed oscillators typically present in an accelerator facility can be replaced by the master mode-locked fiber laser. In this paper, we briefly review progress on the development of the synchronization system and then discuss the implementation of this new possibility. Several technical issues related to this approach are analyzed.
Toru KAWANO Keiji GOTO Toyohiko ISHIHARA
In this paper, we have derived the new solution for the medium-frequency and the high-frequency ground wave propagation in a surface duct over mixed-paths. We have shown newly that the solution for the ground wave propagation in a standard atmosphere can be obtained directly from the solution for the surface duct problem by applying the analytic continuation from the negative equivalent radius of curvature of the earth to the positive one. Through the theoretical and experimental studies, it is confirmed that the radio wave propagating over the sea in the land-to-sea mixed-paths is enhanced by the recovery effect. It is clarified that the ground wave is also enhanced in the surface duct in a long range propagation. It is shown that the unexpected attenuation and the anomalous variation with distance are appeared in the propagation in the urban area due to the emergence of the slow-wave type trapped surface wave.
Jun SHIBAYAMA Shota TAKAGI Tomohide YAMAZAKI Junji YAMAUCHI Hisamatsu NAKANO
A waveguide-based surface plasmon resonance (SPR) sensor with an adsorbed layer is analyzed using the beam-propagation method. For two-dimensional (2-D) models, numerical results show that the change in thickness of the adsorbed layer placed on the metal leads to a significant shift of the maximum absorption wavelength. Through eigenmode analysis, the maximum absorption wavelength is found to be consistent with the cutoff wavelength of the second-order surface plasmon mode. The designed 2-D sensor shows an absorption wavelength shift from 0.595 to 0.603 µm, when the analyte refractive index is increased from 1.330 to 1.334. After a basic investigation using the 2-D models, we next study 3-D models. When the metal with the absorbed layer is wide enough to cover the core region, the 3-D results are similar to the 2-D results. However, as the metal width is reduced, the absorption wavelength shifts toward a shorter wavelength and the sensitivity to the refractive index change degrades gradually. The degradation of the sensitivity is considerable when the metal width is narrower than the core width. As a result, the metal width of the practical SPR sensor should be slightly wider than the core width so as to maintain the sensitivity corresponding to that obtained for the 2-D model.
The selection of motion vectors plays an important role in the error propagation process between inter-frames. In this letter, an end-to-end prediction error calculation method is proposed and is used for the rate-distortion optimized selection of motion vectors. Simulation results show that the robustness of encoded video streams under error-prone environment is improved.
Danardono Dwi ANTONO Kenichi INAGAKI Hiroshi KAWAGUCHI Takayasu SAKURAI
A simple analytical model based on Delayed Quadratic (DQ) Transfer Function approximation is proposed for estimating waveforms of inductive single-line interconnects in VLSI's. An expression for overshoot voltage is derived by the model within 17% error for the line width less than 10 times the minimum line width and typical input signal. A delay expression is also proposed within 15% for the same condition. The strength of the inductive effect is shown to be expressed by a closed-form expression, A=2(L(CT+0.5C))1/2/(RT(CT+CJ)+RTC+RCT+0.4RC). By using the criteria, a scaling trend of inductive effects in VLSI's is discussed. It is shown that the inductive effect of single-line, minimum-width VLSI interconnect peaks off at 90 nm based on the ITRS predicted parameters.
Kenta KASAI Shinya MIYAMOTO Tomoharu SHIBUYA Kohichi SAKANIWA
Irregular Repeat-Accumulate (IRA) codes, introduced by Jin et al., have a linear-time encoding algorithm and their decoding performance is comparable to that of irregular low-density parity-check (LDPC) codes. Meanwhile the authors have introduced detailedly represented irregular LDPC code ensembles specified with joint degree distributions between variable nodes and check nodes. In this paper, by using density evolution method [7],[8], we optimize IRA codes specified with joint degree distributions. Resulting codes have higher thresholds than Jin's IRA codes.
Ultra wideband (UWB) signal propagation was measured and characterized in comparison with narrowband in a passenger-car compartment, to accommodate the design of new wireless devices for the safety and comfort of passengers. Spatial distributions of UWB and narrowband path gain, delay profiles, and delay spreads within the compartment were derived from frequency-domain responses (from 3.1 to 10.6 GHz) measured with a vector network analyzer. Whereas narrowband channels resulted in a number of dead spots (deep fading points), UWB yielded none, though some frequency dispersion was inevitable. Fading depth versus occupied bandwidth was also derived, which indicated superiority of UWB over narrowband systems from the viewpoint of link budget. Comparison with two other environments was also made in the received energy contained in a given number of multipath components.