Ryosuke YANAGISAWA Yoshiki KAYANO Hiroshi INOUE
Basic left hand mode transmission line (LH mode TL) characteristics made on PCB is an important future issue for the application of the EMC field. In this paper, possibility of a LH mode TL characteristic made by a folded-stepped impedance resonator (F-SIR) type is investigated experimentally and numerically. The experimental and calculated from FEM and equivalent circuit results indicate that some backward propagation characteristic and negative group delay can be established by F-SIR structure.
Ken HORIKAWA Tetsuya UEDA Masahiro AKIYAMA
Beam steering of leaky wave radiation from a nonreciprocal composite right/left handed transmission line with a ferrite substrate is proposed. The nonreciprocal phase constants of the line were tuned by changing the applied DC magnetic field normal to the ferrite substrate. In the numerical simulation and the experiment, the nonreciprocal phase characteristics and leaky wave radiation are investigated for the ferrite substrate with the magnetization not only in the saturated region, but also in the unsaturated region. The numerical simulation results are in good agreement with the measurement. It is confirmed that the beam directions of the obliquely unidirectional leaky wave radiation for two different power directions are continuously tunable.
Jin SUN Kiran POTLURI Janet M. WANG
With the scaling down of CMOS devices, process variation is becoming the leading cause of CMOS based analog circuit failures. For example, a mere 5% variation in feature size can trigger circuit failure. Various methods such as Monte-Carlo and corner-based verification help predict variation caused problems at the expense of thousands of simulations before capturing the problem. This paper presents a new methodology for analog circuit performance prediction. The new method first applies statistical uncertainty analysis on all associated devices in the circuit. By evaluating the uncertainty importance of parameter variability, it approximates the circuit with only components that are most critical to output results. Applying Chebyshev Affine Arithmetic (CAA) on the resulting system provides both performance bounds and probability information in time domain and frequency domain.
Keita UCHIYAMA Masahiko SAKAI Toshiki SAKABE
In this paper, we show that the termination and the innermost termination properties are decidable for the class of term rewriting systems (TRSs for short) all of whose dependency pairs are right-linear and right-shallow. We also show that the innermost termination is decidable for the class of TRSs all of whose dependency pairs are shallow. The key observation common to these two classes is as follows: for every TRS in the class, we can construct, by using the dependency-pairs information, a finite set of terms such that if the TRS is non-terminating then there is a looping sequence beginning with a term in the finite set. This fact is obtained by modifying the analysis of argument propagation in shallow dependency pairs proposed by Wang and Sakai in 2006. However we gained a great benefit that the resulted procedures do not require any decision procedure of reachability problem used in Wang's procedure for shallow case, because known decidable classes of reachability problem are not larger than classes discussing in this paper.
Chung-Lin WEN Bing-Yu CHEN Yoichi SATO
In this paper, we present an interactive and intuitive graph-cut-based video segmentation system while taking both color and motion information into consideration with a stroke-based user interface. Recently, graph-cut-based methods become prevalent for image and video segmentation. However, most of them deal with color information only and usually failed under circumstances where there are some regions in both foreground and background with similar colors. Unfortunately, it is usually hard to avoid, especially when the objects are filmed under a natural environment. To make such methods more practical to use, we propose a graph-cut-based video segmentation method based on both color and motion information, since the foreground objects and the background usually have different motion patterns. Moreover, to make the refinement mechanism easy to use, the strokes drawn by the user are propagated to the temporal-spatial video volume according to the motion information for visualization, so that the user can draw some additional strokes to refine the segmentation result in the video volume. The experiment results show that by combining both color and motion information, our system can resolve the wrong labeling due to the color similarity, even the foreground moving object is behind an occlusion object.
Sangjoon PARK Sooyong CHOI Seung-Hoon HWANG
A continuous belief propagation (BP) decoding algorithm for a hybrid automatic repeat request (ARQ) system is proposed in this paper. The proposed continuous BP decoding algorithm utilizes the extrinsic information generated in the last iteration of the previous transmission for a continuous progression of the decoding through retransmissions. This allows the continuous BP decoding algorithm to accelerate the decoding convergence for codeword determination, especially when the number of retransmissions is large or a currently combined packet has punctured nodes. Simulation results verify the effectiveness of the proposed continuous BP decoding algorithm.
Yong-Ki KWON Man-Seop LEE Hakyong KIM
Atmospheric radio ducts can trap VHF/UHF radio waves and propagate them over long distances. 284.4625 MHz Japanese radio wave signal measurements show that the radio waves are propagated to Korea coastal regions when ground temperatures exceed 10C. This paper discusses the reasons for the existence of this critical temperature threshold.
The theoretical studies conducted mainly by the author are reviewed on (1) derivation of arbitrary order moment equations and solutions of some equations, (2) scattering by many particles and the effective medium constant of random medium, (3) scattering by a conducting body in random media and (4) spatially partially-coherent wave scattering, with application to satellite communications, artificial material development, and sensing and radar technology. The leading research results are described with many references; and also unsolved subjects in the above four studies are touched.
Vakhtang JANDIERI Kiyotoshi YASUMOTO Anurag SHARMA Hansa CHAUHAN
A rigorous semi-analytical approach for the scalar field in a microstructured optical fiber, which is formed of layered cylindrical arrays of circular rods symmetrically distributed on each concentric cylindrical layer, is presented. The method uses the T-matrix of a circular rod in isolation and the generalized reflection and transmission matrices of cylindrical arrays. Numerical examples of the mode index for three-layered hexagonal structure of circular air holes are demonstrated and compared with those obtained by a variational method.
Wataru YAMADA Naoki KITA Takatoshi SUGIYAMA Toshio NOJIMA
This paper proposes new techniques to simulate a MIMO propagation channel using the ray-tracing method for the purpose of decreasing the computational complexity. These techniques simulate a MIMO propagation channel by substituting the propagation path between a particular combination of transmitter and receiver antennas for all combinations of transmitter and receiver antennas. The estimation accuracy calculated using the proposed techniques is evaluated based on comparison to the results calculated using imaging algorithms. The results show that the proposed techniques simulate a MIMO propagation channel with low computational complexity, and a high level of estimation accuracy is achieved using the proposed Vector-Rotation Approximation technique compared to that for the imaging algorithm.
Gou HOSOYA Hideki YAGI Manabu KOBAYASHI Shigeichi HIRASAWA
Two decoding procedures combined with a belief-propagation (BP) decoding algorithm for low-density parity-check codes over the binary erasure channel are presented. These algorithms continue a decoding procedure after the BP decoding algorithm terminates. We derive a condition that our decoding algorithms can correct an erased bit which is uncorrectable by the BP decoding algorithm. We show by simulation results that the performance of our decoding algorithms is enhanced compared with that of the BP decoding algorithm with little increase of the decoding complexity.
This paper presents a new signaling architecture for radio-access control in wireless communications systems. Called THREP (for THREe-phase link set-up Process), it enables systems with low-cost configurations to provide tetherless access and wide-ranging mobility by using autonomous radio-link controls for fast cell searching and distributed call management. A signaling architecture generally consists of a radio-access part and a service-entity-access part. In THREP, the latter part is divided into two steps: preparing a communication channel, and sustaining it. Access control in THREP is thus composed of three separated parts, or protocol phases. The specifications of each phase are determined independently according to system requirements. In the proposed architecture, the first phase uses autonomous radio-link control because we want to construct low-power indoor wireless communications systems. Evaluation of channel usage efficiency and hand-over loss probability in the personal handy-phone system (PHS) shows that THREP makes the radio-access sub-system operations in a practical application model highly efficient, and the results of a field experiment show that THREP provides sufficient protection against severe fast CNR degradation in practical indoor propagation environments.
Naohiko IWAKIRI Takehiko KOBAYASHI
This paper proposes an ultra-wideband double-directional spatio-temporal channel sounding technique using transformation between frequency- and time-domain (FD and TD) signals. Virtual antenna arrays, composed of omnidirectional antennas and scanners, are used for transmission and reception in the FD. After Fourier transforming the received FD signals to TD ones, time of arrival (TOA) is estimated using a peak search over the TD signals, and then angle of arrivals (AOA) and angle of departure (AOD) are estimated using a weighted angle histogram with a multiple signal classification (MUSIC) algorithm applied to the FD signals, inverse-Fourier transformed from the TD signals divided into subregions. Indoor channel sounding results validated that an appropriate weighting reduced a spurious level in the angle histogram by a factor of 0.1 to 0.2 in comparison with that of non-weighting. The proposed technique successfully resolved dominant multipath components, including a direct path, a single reflection, and a single diffraction, in line-of-sight (LOS) and non-LOS environments. Joint TOA and AOA/AOD spectra were also derived from the sounding signals. The spectra illustrated the dominant multipath components (agreed with the prediction by ray tracing) as clusters.
Louis-Ray HARRIS Takashi HIKAGE Toshio NOJIMA
The Finite-Difference Time-Domain (FDTD) technique is presented in this paper as an estimation method for radio propagation prediction in large and complex wireless local area network (WLAN) environments. Its validity is shown by comparing measurements and Ray-trace method with FDTD data. The 2 GHz (802.11b/g) and 5 GHz (802.11a) frequency bands are used in both the calculations and experiments. The electric field (E-field) strength distribution has been illustrated in the form of histograms and cumulative ratio graphs. By using the FDTD method to vary the number of human bodies in the environment, the effects on E-field distribution due to human body absorption are also observed for 5 GHz WLAN design.
Kazuto YANO Makoto TAROMARU Masazumi UEBA
This paper introduces our proposed pre-FFT type MMSE-AAA for an OFDM packet transmission system to suppress sporadic interference. The AAA scheme controls an antenna weight to minimize the mean square error between its output signals of two periods with identical transmitted waveform and iterates the weight updating process in an OFDM symbol to rapidly converge the weight. The average PER performance of the proposed AAA with the presence of a sporadic inter-system/intra-system interference signal is evaluated through computer simulations that assume an exponentially decaying 12-path LOS fading channel and IEEE 802.11a data frame transmission. Simulation results show that the proposed AAA can effectively suppress sporadic inter-system interference that is irrelevant to its arrival timing. Sporadic intra-system interference can also be suppressed by the proposed AAA more efficiently than inter-system interference as long as the interference arrives between 13% and 90% of the OFDM symbol duration after the beginning of an OFDM symbol of the desired signal.
Flooding is an indispensable operation for providing control or routing functionalities to mobile ad hoc networks (MANETs). Previously, many flooding schemes have been studied with the intention of curtailing the problems of severe redundancies, contention, and collisions in traditional implementations. A recent approach with relatively high efficiency is 1HI by Liu et al., which uses only 1-hop neighbor information. The scheme achieves local optimality in terms of the number of retransmission nodes with time complexity Θ(nlog n), where n is the number of neighbors of a node; however, this method tends to make many redundant transmissions. In this paper, we present a novel flooding algorithm, 2HBI (2-hop backward information), that efficiently reduces the number of retransmission nodes and solves the broadcast storm problem in ad hoc networks using our proposed concept, "2-hop backward information." The most significant feature of the proposed algorithm is that it does not require any extra communication overhead other than the exchange of 1-hop HELLO messages but maintains high deliverability. Comprehensive computer simulations show that the proposed scheme significantly reduces redundant transmissions in 1HI and in pure flooding, up to 38% and 91%, respectively; accordingly it alleviates contention and collisions in networks.
Yoko UWATE Yoshifumi NISHIO Ruedi STOOP
Durability describes the ability of a device to operate properly in imperfect conditions. We have recently proposed a novel neural network structure called an "Affordable Neural Network" (AfNN), in which affordable neurons of the hidden layer are considered as the elements responsible for the robustness property as is observed in human brain function. Whereas earlier we have shown that AfNNs can still generalize and learn, here we show that these networks are robust against damages occurring after the learning process has terminated. The results support the view that AfNNs embody the important feature of durability. In our contribution, we investigate the durability of the AfNN when some of the neurons in the hidden layer are damaged after the learning process.
Wireless communication devices in the field of medical implant, such as cardiac pacemakers and capsule endoscopes, have been studied and developed to improve healthcare systems. Especially it is very important to know the range and position of each device because it will contribute to an optimization of the transmission power. We adopt the time-based approach of position estimation using ultra wideband signals. However, the propagation velocity inside the human body differs in each tissue and each frequency. Furthermore, the human body is formed of various tissues with complex structures. For this reason, propagation velocity is different at a different point inside human body and the received signal so distorted through the channel inside human body. In this paper, we apply an adaptive template synthesis method in multipath channel for calculate the propagation time accurately based on the output of the correlator between the transmitter and the receiver. Furthermore, we propose a position estimation method using an estimation of the propagation velocity inside the human body. In addition, we show by computer simulation that the proposal method can perform accurate positioning with a size of medical implanted devices such as a medicine capsule.
Toru KAWANO Keiji GOTO Toyohiko ISHIHARA
In this paper, we have obtained the integral representation for the ground wave propagation over land-to-sea mixed-paths which uses the equivalent current source on an aperture plane. By extending the integral to the complex plane and deforming the integration path into the steepest descent path, we have derived a simple integral representation for the mixed-path ground wave propagation. We have also derived the hybrid numerical and asymptotic representation for an efficient calculation of the ground wave and for easy understanding of the diffraction phenomena. By using the method of the stationary phase applicable uniformly as the stationary phase point approaches the endpoint, we have derived the high-frequency asymptotic solution for the ground wave propagation over the mixed-path. We have confirmed the validity of the various representations by comparing both with the conventional mixed-path theory and with the experimental results performed in Kanto areas including the sea near Tokyo bay. By examining the asymptotic solution in detail, we have found out the cause or the mechanism of the recovery effect occurring on the portion of the sea over the land-to-sea mixed-path.
This paper presents an easy and efficient modification of simplified 2D ray-launching method, by approximately including multiple reflection effect inside walls for indoor environment. In order to precisely carry out the ray-launching procedure inside lossy wall, a simple modification using a true real refraction angle is first introduced, instead of complex one. Furthermore, an efficient approximation is carried out to collect the internal multiple reflected rays into the primary one. We here call it collective ray approach. Consequently, it is confirmed from the detailed considerations that the present ray representations obtained by introducing the real refraction angle are well suitable for indoor propagation analysis, and in particular the collective ray solution can be utilized confidently even when the internal reflections strongly contribute to the propagation feature of the considered indoor environment.