Keyword Search Result

[Keyword] satellite(245hit)

121-140hit(245hit)

  • Adaptive CDV Compensation Algorithm for Satellite Networks

    Tae-Hee KIM  Kwan-Woong KIM  Jae-Hoon KIM  Ho-Jin LEE  

     
    PAPER-Satellite Communication

      Vol:
    E88-B No:8
      Page(s):
    3401-3407

    In this paper, we propose an adaptive compensation algorithm to compensate cell delay variation (CDV) occurring during ATM/TDMA transition in a satellite ATM network. The proposed CDV compensation algorithm uses two types of additional information: cell position information (Cp)--indicating the number of cells (N) arriving within a control unit time (Tc) and positions of cells at a given time--and the number of cells in bursts--to take into account the characteristics of localized bursts. To evaluate the performance of the proposed algorithm, we performed a computer simulation based on an OPNET environment, using the Markov modulated Poisson process (MMPP) traffic model and assessed its effectiveness from varied standpoints. The results of the performance testing indicate that the proposed algorithm, while requiring significantly less additional information than previous CDV compensation algorithms, is able to more efficiently compensate CDV in localized burst traffic than the previous ones.

  • Influence of Transmitting Ground and Satellite Station HPA Nonlinearities on Satellite Communication System Performance in the Presence of Cochannel Interference

    Mihajlo C. STEFANOVIC  Goran T. DJORDJEVIC  

     
    PAPER-Satellite Communication

      Vol:
    E88-B No:7
      Page(s):
    3005-3009

    Taking the uplink and downlink cochannel interference and noise into account, we determine the error probability in detecting a binary phase-shift keying (BPSK) signal transmitted over a satellite system containing two high power amplifiers (HPA). The first one is the constituent part of the transmitting ground station and the second one is the constituent part of the satellite station. The emphasis is placed on determining the system performance degradation imposed by the influence of the nonlinear characteristic of the HPA at the transmitting ground station in combination with the negative influences of the uplink and downlink cochannel interference, as well as the nonlinear characteristic of HPA at the satellite station.

  • Advanced Performance Enhancing Mechanisms for Supporting Real-Time Services on DVB-RCS System Environments

    Nam-Kyung LEE  Soo-Hoan CHAE  Deock-Gil OH  Ho-Jin LEE  

     
    PAPER

      Vol:
    E88-B No:7
      Page(s):
    2777-2783

    This paper describes two way satellite system environments on geostationary orbit (GEO) and performance enhancement mechanisms which reduces round trip time (RTT) and supports real-time services. We use performance enhancing proxy (PEP) for reducing round trip time and user-level real-time scheduler for reducing deadline violation tasks. The user-level real-time scheduling method classifies priority of user process into four types and those are reflected in kernel. With these dual performance enhancement mechanisms, we can improve quality of service (QoS) of end-user who connects to the DVB-RCS system.

  • Observation of Water Vapor Attenuation at Ku Band in Tropical Region

    Khamphoui SOUTHISOMBATH  Toshio WAKABAYASHI  Yoshiaki MORIYA  

     
    LETTER

      Vol:
    E88-B No:6
      Page(s):
    2446-2448

    The measurement results of clear sky attenuation on an earth-satellite path at frequency Ku band in Laos are described. The measurement results show that diurnal clear sky noise vary with respect to humidity characteristics, which is a significant value in the early morning while low at daytime. The mean difference in variation is about 0.7 dB.

  • Optimum Radio Channel Allocation Taking Account of Both Frequency and Power Constraints for Wide-Area Wireless Access Systems

    Satoshi KONISHI  Yoji KISHI  Shinichi NOMOTO  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E87-B No:12
      Page(s):
    3722-3733

    In wide-area wireless access systems such as satellite communications systems and stratospheric platform systems, electric power supplies for radio communications are realized using solar photovoltaic cells and/or fuel cells. However, the on-board weight limits restrict the number of cells that can be equipped. In addition, the transmission power of such systems is limited taking account of issues and regulations on sharing the same frequency band with other systems. Hence, both the frequency band and electric power is limited, which are crucial radio resources for those systems. Although radio channel allocation methods taking account of the frequency constraint only or the power constraint only have been proposed, radio channel allocation methods taking account of both constraints simultaneously have been insufficiently studied. This paper proposes a radio channel allocation method that provides global optimum allocation results by utilizing the linear programming method. The proposed method has features such that the method first allocates radio channels in proportion to the traffic demand distributed over the service coverage area and then maximizes the total radio channels allocated to systems. Numerical results are presented for a stratospheric platform system that covers an area of Japan, as an example, to demonstrate that the proposed method optimally allocates radio channels taking account of both constraints while efficiently allocating excess resources. In addition, whether a system reaches either the frequency or power limit can be estimated, by investigating the radio channel allocation results. Furthermore, enhanced linear programming models based on a method aiming at practical use of the radio channel allocation results in operation are also introduced. The enhanced model is demonstrated to work effectively to avoid unbalanced radio channel allocations over geographical areas. The proposed method and linear programming models are useful not only for making pre-plans but also for determining the amount of necessary frequency and power resources in designing systems.

  • A Synchronization Method for Synchronous CDMA Broadband Communication Systems with GEO Satellites

    Takuya SAKAMOTO  Daisuke UMEHARA  Yoshiteru MORIHIRO  Makoto KAWAI  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2111-2118

    High speed core networks with optical fibers have spread widely, but it is still difficult to access the core networks from many rural areas. Synchronous CDMA systems with GEO satellite links are attractive to solve this problem, since they have wide service areas and are suitable for packet-based networks due to their statistically multiplexing effects. Additionally, the synchronous CDMA systems have more effective frequency utilization and power efficiency than asynchronous ones. In the synchronous CDMA systems, transmitted signals from fixed earth stations are required to achieve synchronization with each other. The broadband systems require extremely precise timing control as their bit rates increase. In this paper, we propose a synchronization method for a synchronous CDMA communication system using a GEO satellite and verify the feasibility of Gigachip rate synchronous CDMA systems.

  • Wearable Microstrip Antenna for Satellite Communications

    Masato TANAKA  Jae-Hyeuk JANG  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2066-2071

    We report a flexible and lightweight wearable microstrip antenna that can be sewn into clothing and hats. This antenna is composed of felt and a conductive woven fabric. Experimental results clearly show that this antenna operates normally as a conventional microstrip antenna, and is practical and feasible for personal satellite communications.

  • Elevation Properties of a Quasi-Zenith Satellite System Using Circular Orbits

    Kazuhiro KIMURA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2142-2151

    This paper discusses the orbital motion and elevation properties of a quasi-zenith satellite system using circular orbits. The satellites are deployed on inclined geosynchronous orbits with identical sub-satellite loci on earth. The satellites trace the locus at even intervals. This satellite system can provide mobile satellite communications and navigation services at very high elevations to middle-latitude regions. In general, the orbital parameters of the satellite system are determined by numerical simulation to maximize the minimum elevation angle in areas where satellite services are to be provided. However, an understanding of the properties of the orbit and consequent elevation properties are important for efficient constellation design. This paper formulates the orbital motion of inclined geosynchronous circular orbits, including the relative motion to the rotating earth. Although elliptical orbit constellations are also possible and can gain higher elevation, only circular orbits, which can be accurately formulated without using an analytically unsolvable Kepler's equation, are discussed in this paper. Elevation properties are evaluated using the geocentric angle between the sub-satellite point and an arbitrary point in the intended service area. This angle is a typical parameter that can be derived as a single-valued function of the elevation at a specific point. Optimum orbital parameters for an intended service area can be easily estimated without numerical simulation using the results of the evaluation described in this paper. These results can also be used to infer whether a circular-orbit constellation is applicable to an intended service area.

  • Performance of Pragmatic Trellis Coded ARQ with Cyclical Multicopy Retransmission for High Speed Mobile Satellite Communication System

    Hirokazu TANAKA  Shoichiro YAMASAKI  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2099-2110

    A Generalized Symbol-rate-increased (GSRI) Pragmatic Trellis coded Type-I Hybrid ARQ based on a Selective-Repeat (SR) ARQ with multicopy (MC) retransmission (SR+MC scheme) for high speed mobile satellite communication system is analyzed. The SR+MC ARQ is a suitable scheme for mobile satellite systems and further improvement of the throughput performance can be expected by an additional combination of an error control coding. In this paper, we investigate the performance of the SR+MC scheme employing GSRI Pragmatic TCM. GSRI TC-MPSK can arbitrarily set the bandwidth expansion ratio keeping higher coding gain than conventional TCM scheme. Also Pragmatic TCM has an advantage in that the modulation level can be easily changeable. By changing the modulation level and the bandwidth expansion ratio, this scheme can optimize the performance according to the channel conditions. Numerical and simulation results show that the GSRI Trellis Coded Type-I Hybrid ARQ presents better performance than conventional Pragmatic Trellis Coded Type-I Hybrid ARQ.

  • Enhanced Multi-Correlator AFC for Fast and Wide Range Frequency Acquisition

    Fumihiro YAMASHITA  Kiyoshi KOBAYASHI  Yoshinori NAKASUGA  Jin MITSUGI  Masazumi UEBA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2072-2081

    This paper presents a new automatic-frequency control (AFC) configuration capable of removing wide range frequency offsets (up to about 0.625 fs, where fs is signal symbol rate). The new configuration consists of an AFC that removes frequency offsets between 0.125 fs and another AFC that detects the frequency offset range coarsely between 0.625 fs. This paper describes the principle of the new AFC configuration. The proposed AFC configuration employs four correlators to enhance the acquisition range. It also adopts the reverse modulation scheme to decrease the acquisition time. The performance of the new AFC configuration is confirmed via computer simulations. It is shown that the proposed configuration can accommodate wide range frequency offsets as well as reduce the acquisition time.

  • Rate-Compatible Punctured Bit-Interleaved Coded Modulation for Mobile Satellite Communications

    Tadashi MINOWA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2082-2089

    Fading in mobile satellite communications severely degrades the performance of data transmission. It is commonly modeled with non-frequency selective Rayleigh fading. For this type of channel, a new structure for a bit-interleaved coded modulation (BICM) scheme is presented and evaluated to determine its effectiveness compared to previously proposed schemes. This scheme is referred to as rate-compatible punctured BICM (RCP-BICM), in that its BICM encoder is able to yield a wide range of data rates by using a punctured convolutional code obtained by periodically perforating parity bits from the output of a low-rate-1/2 systematic convolutional code. A trellis-coded modulation (TCM) scheme and a turbo TCM (TTCM) scheme are discussed and evaluated for comparison with the RCP-BICM scheme. Simulation results demonstrate that the RCP-BICM scheme with hard-decision iterative decoding is superior to the TCM scheme by 3 dB at a bit error rate (BER) of 10-5 over an Rayleigh fading channel, and comes at a BER of 10-5 within 1 dB of the TCM scheme over an additive white Gaussian noise (AWGN) channel.

  • Quantitative Evaluation of Time Diversity as a Novel Attenuation Mitigation Technology for Future High Speed Satellite Communication

    Hajime FUKUCHI  Tetsuya NAKAYAMA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2119-2123

    The advanced satellite broadcasting system in the 21 GHz band or higher frequency bands is expected to be suitable for use in high quality multimedia services in the future. To establish this system, rain attenuation mitigation is very important and the time diversity system has been proposed as an appropriate technology for this purpose. This paper shows principle of time diversity as an attenuation mitigation technology and also shows the effect of time diversity. We also propose a method for predicting time diversity gain as a function of the rain attenuation, cumulative time percentage, and time delay of two data contents or broadcasts.

  • Development of Mobile Broadband Satellite Access System for Ka/Ku-band Satellite Communications

    Yun-Jeong SONG  Min-Su SHIN  Byoung-Hak KIM  Ho-Jin LEE  Young-Keun CHANG  Sung-Woong RA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2152-2161

    In this paper, the design of a mobile satellite Internet access (MSIA) system and a mobile broadband satellite access system, called Mobile Broadband Interactive Satellite Multimedia Access Technology System (MoBISAT) are presented. MSIA system provides Internet service, broadcasting, and digital A/V service in both fixed and mobile environments using Ku-band geostationary earth orbit (GEO) satellite. A Ku-band two-way active phased array antenna installed on top of the transportation vehicles can enable the transmission of signals to satellite as well as signal tracking and reception. The forward link and return link are a high speed Time Division Multiplex (TDM) and TDMA transmission media, respectively, both of which carry signaling and user traffic. The MoBISAT, which is a next generation mobile broadband satellite access system, provides both Ku-band satellite TV and Ka-band high-speed Internet to the passengers and crews for land, maritime, and air vehicles. This paper addresses the main technological solutions adopted for the implementation and test results for the MSIA system and the main design features of the MoBISAT system.

  • Continuous ISL and Satellite Diversity in a Satellite Constellation

    Ryutaro SUZUKI  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2132-2141

    For a LEO constellation system, it is important to optimize the orbit parameters to maximize the quality of communication service. At the Next-generation LEO System (NeLS) Research Center, the LEO parameters were evaluated for a mobile satellite communication system. A 2π constellation was selected to maintain a stable inter-satellite link (ISL). An elevation angle above 20 degrees was required for a service area of 70 degree of latitude. The performance of optical ISL terminals has since improved as a result of key technological developments at the NeLS Research Center. As a consequence, the constellation parameters for ISL have become more flexible. Furthermore, the ability of ground station to access two satellites has improved communication quality. In this paper, we address the optimum constellation parameters for dual-satellite coverage. An equation for determining the optimum inclination angle was derived from the constellation parameters. Moreover, by using the new constellation parameters, we found that the satellite network consists of a bi-directional Manhattan Street Network (MSN), and the ISL network structure was improved.

  • A Satellite Selection Method for Walker Delta LEO Satellite Networks

    Umith DHARMARATNA  Hiroshi TSUNODA  Nei KATO  Yoshiaki NEMOTO  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2124-2131

    Low Earth Orbit (LEO) satellite constellations have been proposed in recent years to provide broadband network access. This research focuses on Walker Delta type constellation. Walker Delta has overlapping ascending and descending orbits. Although Inter Satellite Links (ISLs) can be utilized between satellites orbiting in the same direction, ISLs cannot be utilized between satellites orbiting in opposite directions. As a result, a Walker Delta Constellation with ISLs has two locally separate overlapping meshes, an ascending and a descending mesh. To reach from one local mesh to the other, the traffic has to pass through the highest latitude intra-plane ISLs. Therefore the propagation delay between terminals connected to different meshes is greater than between terminals connected to the same mesh. Due to characteristic handover of LEO satellites, terminals can connect to a satellite in the other mesh during communication, causing drastic variation of propagation delay which results in degradation of communication quality. These issues can be solved by continuously connecting the communication terminals to the same mesh. In this paper, a satellite selection method for Walker Delta Constellations with double mesh coverage is proposed. It employs geographical location information of the communicating terminals, to connect them to the same mesh. In addition, the proposed method selects the mesh that minimize propagation delay for that communication session. It is shown through simulation that the proposed method is effective in reducing delay and jitter for a connection while improving overall communication quality of the network.

  • Performance Evaluation of Data Link Protocol with Adaptive Frame Length in Satellite Networks

    Eung-In KIM  Jung-Ryun LEE  Dong-Ho CHO  

     
    LETTER-Satellite and Space Communications

      Vol:
    E87-B No:6
      Page(s):
    1730-1736

    We propose a new data link protocol with an adaptive frame length control scheme for satellite networks. The wireless communication channel in satellite networks is subject to errors that occur with time variance. The frame length of the data link layer is another important factor that affects throughput performance in dynamic channel environments. If the frame length could be chosen adaptively in response to changes in the dynamically varying satellite channel, maximum throughput could be achieved under both noisy and non-noisy error conditions. So, we propose a frame length control scheme that acts adaptively to counter errors that occur with time variance. We model the satellite channel as a two-state Markov block interference (BI) model. The estimation of the channel error status is based on the short-term bit error rate and the duty cycle of noise bursts. Numerical and computer simulation results show that the proposed scheme can achieve high throughput for both dense and diffuse burst noise channels.

  • A Radial Line Slot Antenna Fed by a Rectangular Waveguide through a Crossed Slot

    Kaoru SUDO  Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antenna and Propagation

      Vol:
    E86-B No:10
      Page(s):
    3063-3070

    A rectangular-to-radial waveguide transformer through a crossed slot is proposed as a feeder of a radial line slot antenna (RLSA) for use in a system of solar power satellite (SPS). The transformer is analyzed and designed by using the MoM with numerical eigenmode basis functions. The measured ripple of the amplitude is 3.0 dB in the φ-direction and a 7.0% frequency bandwidth for rotating mode with the ripple below 6 dB is obtained. This bandwidth is wider than that of conventional ring slot or cavity resonator with a coaxial feeder. The antenna measurements at 5.8 GHz show reasonable rotational symmetry both in the near-field distribution and the far field radiation patterns. The reflection is -27.7 dB at the design frequency and below -15 dB in the 7.0% bandwidth. The gain of the antenna with the diameter of 300 mm is 22.7 dBi and the efficiency is 56%.

  • HEMT: Looking Back at Its Successful Commercialization

    Takashi MIMURA  

     
    INVITED PAPER

      Vol:
    E86-C No:10
      Page(s):
    1908-1910

    The history of the development of the High Electron Mobility Transistor (HEMT) is an outstanding illustration of how a new device can be successfully marketed. In this paper we discuss a key to successful commercialization of new devices.

  • Optimization of Handover Plans to Minimize the Degradation of Communications QoS for LEO Satellite Systems

    Yasushi WAKAHARA  Kazumasa SATO  Jun-ichi MIZUSAWA  

     
    PAPER-Network Control and Management

      Vol:
    E86-B No:10
      Page(s):
    2891-2901

    Handovers are occasionally required for LEO (Low Earth Orbit) satellite systems, since the satellites are always moving. Handovers, however, generally cause some degradation of communication quality. Some LEO systems have a feature of two types of satellites in terms of the direction of their orbits and the handover between satellites of different types may lead to a large change in the path between the service satellites used for the communication. Thus, the degradation can be generally large especially in the case of handovers between different type satellites. As such, best handover plan should be derived so that the number of handovers should be made smallest to minimize the degradation of the communication quality. In this paper, such optimization problems are formulated in relation to the handovers and their solutions are proposed to actualize the optimization of handover plans for LEO satellite systems with two types of satellites.

  • An 18 GHz-Band MMIC Diode Linearizer Using a Parallel Capacitor with a Bias Feed Resistance

    Kazuhisa YAMAUCHI  Masatoshi NAKAYAMA  Yukio IKEDA  Akira AKAISHI  Osami ISHIDA  Naoto KADOWAKI  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1486-1493

    An 18 GHz-band Microwave Monolithic Integrated Circuit (MMIC) diode linearizer using a parallel capacitor with a bias feed resistance is presented. The newly employed parallel capacitor is able to control gain and phase deviations of the linearizer. This implies that the gain deviation of the linearizer can be controlled without changing the phase deviation. The presented linearizer can compensate the distortion of an amplifier sufficiently. The operation principle of the linearizer with the parallel capacitor is investigated. It is clarified that the gain deviation can be adjusted without changing the phase deviation by using the parallel capacitor. Two variable gain buffer amplifiers and the core part of the linearizer which consists of a diode, a bias feed resistor, and a capacitor are fabricated on the MMIC chip. The amplifiers cancel the frequency dependence of the core part of the linearizer to improve bandwidth of the MMIC. Further, the amplifiers contribute to earn low reflection and compensate insertion loss of the linearizer. The MMIC chip is size of 2.5 mm 1 mm. The linearizer has demonstrated improvement of 3rd Inter-Modulation Distortion (IMD3) of 12 dB at 18 GHz and improvement of more than 6 dB between 17.8 GHz and 18.6 GHz.

121-140hit(245hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.