Keyword Search Result

[Keyword] spurious(45hit)

1-20hit(45hit)

  • Enhanced Oscillation Frequency in Series-Connected Resonant-Tunneling Diode-Oscillator Lattice Loop

    Koichi NARAHARA  Koichi MAEZAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/12/22
      Vol:
    E106-C No:7
      Page(s):
    395-404

    Series-connection of resonant-tunneling diodes (RTDs) has been considered to be efficient in upgrading the output power when it is introduced to oscillator architecture. This work is for clarifying the same architecture also contributes to increasing oscillation frequency because the device parasitic capacitance is reduced M times for M series-connected RTD oscillator. Although this mechanism is expected to be universal, we restrict the discussion to the recently proposed multiphase oscillator utilizing an RTD oscillator lattice loop. After explaining the operation principle, we evaluate how the oscillation frequency depends on the number of series-connected RTDs through full-wave calculations. In addition, the essential dynamics were validated experimentally in breadboarded multiphase oscillators using Esaki diodes in place of RTDs.

  • Theoretical and Experimental Analysis of the Spurious Modes and Quality Factors for Dual-Mode AlN Lamb-Wave Resonators

    Haiyan SUN  Xingyu WANG  Zheng ZHU  Jicong ZHAO  

     
    PAPER-Ultrasonic Electronics

      Pubricized:
    2022/08/10
      Vol:
    E106-C No:3
      Page(s):
    76-83

    In this paper, the spurious modes and quality-factor (Q) values of the one-port dual-mode AlN lamb-wave resonators at 500-1000 MHz were studied by theoretical analysis and experimental verification. Through finite element analysis, we found that optimizing the width of the lateral reflection boundary at both ends of the resonator to reach the quarter wavelength (λ/4), which can improve its spectral purity and shift its resonant frequency. The designed resonators were micro-fabricated by using lithography processes on a 6-inch wafer. The measured results show that the spurious mode can be converted and dissipated, splitting into several longitudinal modes by optimizing the width of the lateral reflection boundary, which are consistent well with the theoretical analysis. Similarly, optimizing the interdigital transducer (IDT) width and number of IDT fingers can also suppress the resonator's spurious modes. In addition, it is found that there is no significant difference in the Qs value for the two modes of the dual-mode resonator with the narrow anchor and full anchor. The acoustic wave leaked from the anchor into the substrate produces a small displacement, and the energy is limited in the resonator. Compared to the resonator with Au IDTs, the resonator with Al IDTs can achieve a higher Q value due to its lower thermo-elastic damping loss. The measured results show the optimized dual-mode lamb-wave resonator can obtain Qs value of 2946.3 and 2881.4 at 730.6 MHz and 859.5 MHz, Qp values of 632.5 and 1407.6, effective electromechanical coupling coefficient (k2eff) of 0.73% and 0.11% respectively, and has excellent spectral purity simultaneously.

  • Design of a Compact Triple-Mode Dielectric Resonator BPF with Wide Spurious-Free Performance Open Access

    Fan LIU  Zhewang MA  Weihao ZHANG  Masataka OHIRA  Dongchun QIAO  Guosheng PU  Masaru ICHIKAWA  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    660-666

    A novel compact 5-pole bandpass filter (BPF) using two different types of resonators, one is coaxial TEM-mode resonator and the other dielectric triple-mode resonator, is proposed in this paper. The coaxial resonator is a simple single-mode resonator, while the triple-mode dielectric resonator (DR) includes one TM01δ mode and two degenerate HE11 modes. An excellent spurious performance of the BPF is obtained due to the different resonant behaviors of these two types of resonators used in the BPF. The coupling scheme of the 5-pole BPF includes two cascade triplets (CTs) which produce two transmission zeros (TZs) and a sharp skirt of the passband. Behaviors of the resonances, the inter-resonance couplings, as well as their tuning methods are investigated in detail. A procedure of mapping the coupling matrix of the BPF to its physical dimensions is developed, and an optimization of these physical dimensions is implemented to achieve best performance of the filter. The designed BPF is operated at 1.84GHz with a bandwidth of 51MHz. The stopband rejection is better than 20dB up to 9.7GHz (about 5.39×f0) except 7.85GHz. Good agreement between the designed and theoretically synthesized responses of the BPF is reached, verifying well the proposed configuration of the BPF and its design method.

  • A Spectral Analyzer Based on Dual Coprime DFT Filter Banks and Sub-Decimation

    Xueyan ZHANG  Libin QU  Zhangkai LUO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/06/23
      Vol:
    E105-B No:1
      Page(s):
    11-20

    Coprime (pair of) DFT filter banks (coprime DFTFB), which process signals like a spectral analyzer in time domain, divides the power spectrum equally into MN bands by employing two DFT filter banks (DFTFBs) of size only M and N respectively, where M and N are coprime integers. With coprime DFTFB, frequencies in wide sense stationary (WSS) signals can be effectively estimated with a much lower sampling rates than the Nyquist rates. However, the imperfection of practical FIR filter and the correlation based detection mode give rise to two kinds of spurious peaks in power spectrum estimation, that greatly limit the application of coprime DFTFB. Through detailed analysis of the spurious peaks, this paper proposes a modified spectral analyzer based on dual coprime DFTFBs and sub-decimation, which not only depresses the spurious peaks, but also improves the frequency estimation accuracy. The mathematical principle proof of the proposed spectral analyzer is also provided. In discussion of simultaneous signals detection, an O-extended MN-band coprime DFTFB (OExt M-N coprime DFTFB) structure is naturally deduced, where M, N, and O are coprime with each other. The original MN-band coprime DFTFB (M-N coprime DFTFB) can be seen a special case of the OExt M-N coprime DFTFB with extending factor O equals ‘1’. In the numerical simulation section, BPSK signals with random carrier frequencies are employed to test the proposed spectral analyzer. The results of detection probability versus SNR curves through 1000 Monte Carlo experiments verify the effectiveness of the proposed spectrum analyzer.

  • Experimental Demonstration of a Hard-Type Oscillator Using a Resonant Tunneling Diode and Its Comparison with a Soft-Type Oscillator

    Koichi MAEZAWA  Tatsuo ITO  Masayuki MORI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2021/06/07
      Vol:
    E104-C No:12
      Page(s):
    685-688

    A hard-type oscillator is defined as an oscillator having stable fixed points within a stable limit cycle. For resonant tunneling diode (RTD) oscillators, using hard-type configuration has a significant advantage that it can suppress spurious oscillations in a bias line. We have fabricated hard-type oscillators using an InGaAs-based RTD, and demonstrated a proper operation. Furthermore, the oscillating properties have been compared with a soft-type oscillator having a same parameters. It has been demonstrated that the same level of the phase noise can be obtained with a much smaller power consumption of approximately 1/20.

  • Possibilities of Large Voltage Swing Hard-Type Oscillators Based on Series-Connected Resonant Tunneling Diodes

    Koichi MAEZAWA  Masayuki MORI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    305-310

    Hard-type oscillators for ultrahigh frequency applications were proposed based on resonant tunneling diodes (RTDs) and a HEMT trigger circuit. The hard-type oscillators initiate oscillation only after external excitation. This is advantageous for suppressing the spurious oscillation in the bias line, which is one of the most significant problems in the RTD oscillators. We first investigated a series-connected circuit of a resistor and an RTD for constructing a hard-type oscillator. We carried out circuit simulation using the practical device parameters. It was demonstrated that the stable oscillation can be obtained for such oscillators. Next, we proposed to use series-connected RTDs for the gain block of the hard-type oscillators. The series circuits of RTDs show the negative differential resistance in very narrow regions, or no regions at all, which makes impossible to use such circuits for the conventional soft-type oscillators. However, with the trigger circuit, they can be used for hard-type oscillators. We confirmed the oscillation and the bias stability of these oscillators, and also demonstrated that the voltage swing can be easily increased by increasing the number of RTDs connected in series. This is promising method to overcome the power restriction of the RTD oscillators.

  • Analog and Digital Collaborative Design Techniques for Wireless SoCs

    Ryuichi FUJIMOTO  

     
    INVITED PAPER

      Vol:
    E99-A No:2
      Page(s):
    514-522

    Analog and digital collaborative design techniques for wireless SoCs are reviewed in this paper. In wireless SoCs, delicate analog performance such as sensitivity of the receiver is easily degraded due to interferences from digital circuit blocks. On the other hand, an analog performance such as distortion is strongly compensated by digital assist techniques with low power consumption. In this paper, a sensitivity recovery technique using the analog and digital collaborative design, and digital assist techniques to achieve low-power and high-performance analog circuits are presented. Such analog and digital collaborative design is indispensable for wireless SoCs.

  • Novel DEM Technique for Current-Steering DAC in 65-nm CMOS Technology

    Yuan WANG  Wei SU  Guangliang GUO  Xing ZHANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E98-C No:12
      Page(s):
    1193-1195

    A novel dynamic element matching (DEM) method, called binary-tree random DEM (BTR-DEM), is presented for a Nyquist-rate current-steering digital-to-analog converter (DAC). By increasing or decreasing the number of unit current sources randomly at the same time, the BTR-DEM encoding reduces switch transition glitches. A 5-bit current-steering DAC with the BTR-DEM technique is implemented in a 65-nm CMOS technology. The measured spurious free dynamic range (SFDR) attains 42 dB for a sample rate of 100 MHz and shows little dependence on signal frequency.

  • Optical Waveguide Theory by the Finite Element Method Open Access

    Masanori KOSHIBA  

     
    INVITED PAPER

      Vol:
    E97-C No:7
      Page(s):
    625-635

    Recent progress in research on the finite element method (FEM) for optical waveguide design and analysis is reviewed, focusing on the author's works. After briefly reviewing fundamentals of FEM such as a theoretical framework, a conventional nodal element, a newly developed edge element to eliminate nonphysical, spurious solutions, and a perfectly matched layer to avoid undesirable reflections from computational window edges, various FEM techniques for a guided-mode analysis, a beam propagation analysis, and a waveguide discontinuity analysis are described. Some design examples are introduced, including current research activities on multi-core fibers.

  • Ultra Linear Modulator with High Output RF Gain Using a 12 MMI Coupler

    Peng YUE  Qian-nan LI  Xiang YI  Tuo WANG  Zeng-ji LIU  Geng CHEN  Hua-xi GU  

     
    BRIEF PAPER-Lasers, Quantum Electronics

      Vol:
    E95-C No:12
      Page(s):
    1883-1886

    A novel and compact electro-optic modulator implemented by a combination of a 12 multimode interference (MMI) coupler and an integrated Mach-Zehnder interferometer (MZI) modulator consisting of a microring and a phase modulator (PM) is presented and analyzed theoretically. It is shown that the proposed modulator offers both ultra-linearity and high output RF gain simultaneously, with no requirements for complicated and precise direct current (DC) control.

  • An Improved Triple-Tunable Millimeter-Wave Frequency Synthesizer with High Performance

    Yuanwang YANG  Jingye CAI  Haiyan JIN  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:11
      Page(s):
    1802-1806

    In this letter, an improved triple-tunable frequency synthesizer structure to achieve both high frequency resolution and fast switching speed without degradation of spurious signals (spurs) level performance is proposed. According to this structure, a high performance millimeter-wave frequency synthesizer with low spurious, low phase noise, and fast switching speed, is developed. This synthesizer driven by the direct digital synthesizer (DDS) AD9956 can adjust the output of a DDS and frequency division ratios of two variable frequency dividers (VFDs) to move the spurious components outside the loop bandwidth of the phase-locked loop (PLL). Moreover, the ADF4252 based microwave PLL can further suppress the phase noise. Experimental results from the implemented synthesizer show that remarkable performance improvements have been achieved.

  • A Single-Chip RF Tuner/OFDM Demodulator for Mobile Digital TV Application

    Yoshimitsu TAKAMATSU  Ryuichi FUJIMOTO  Tsuyoshi SEKINE  Takaya YASUDA  Mitsumasa NAKAMURA  Takuya HIRAKAWA  Masato ISHII  Motohiko HAYASHI  Hiroya ITO  Yoko WADA  Teruo IMAYAMA  Tatsuro OOMOTO  Yosuke OGASAWARA  Masaki NISHIKAWA  Yoshihiro YOSHIDA  Kenji YOSHIOKA  Shigehito SAIGUSA  Hiroshi YOSHIDA  Nobuyuki ITOH  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    557-566

    This paper presents a single-chip RF tuner/OFDM demodulator for a mobile digital TV application called “1-segment broadcasting.” To achieve required performances for the single-chip receiver, a tunable technique for a low-noise amplifier (LNA) and spurious suppression techniques are proposed in this paper. Firstly, to receive all channels from 470 MHz to 770 MHz and to relax distortion characteristics of following circuit blocks such as an RF variable-gain amplifier and a mixer, a tunable technique for the LNA is proposed. Then, to improve the sensitivity, spurious signal suppression techniques are also proposed. The single-chip receiver using the proposed techniques is fabricated in 90 nm CMOS technology and total die size is 3.26 mm 3.26 mm. Using the tunable LNA and suppressing undesired spurious signals, the sensitivities of less than -98.6 dBm are achieved for all the channels.

  • Wide Band Spurious Suppression of Multi-Strip Resonator BPF -- Comprehensive Way to Suppress Spurious Responses in BPFs -- Open Access

    Ikuo AWAI  

     
    INVITED PAPER

      Vol:
    E93-C No:7
      Page(s):
    942-948

    A new comprehensive method to suppress the spurious modes in a BPF is proposed taking the multi-strip resonator BPF as an example. It consists of disturbing the resonant frequency, coupling coefficient and external Q of the higher-order modes at the same time. The designed example has shown an extraordinarily good out-of-band response in the computer simulation.

  • TCP-Friendly Retransmission Persistence Management for SR-ARQ Protocols

    Jechan HAN  Beomjoon KIM  Jaiyong LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:10
      Page(s):
    3243-3246

    This letter proposes a new retransmission persistence management scheme for selective repeat automatic repeat request (SR-ARQ). By considering the overall traffic load that has to be managed by SR-ARQ, the proposed scheme arbitrates the retransmission persistence to prevent an abrupt delay increment due to excessive link-level local retransmissions. OPNET simulations show that SR-ARQ performs better with the proposed scheme than with a fixed value of retransmission persistence in terms of the throughput of transmission control protocol (TCP).

  • Spurious Suppression Effect by Transmit Bandpass Filters with HTS Dual-Mode Resonators for 5 GHz Band Open Access

    Kazunori YAMANAKA  Kazuaki KURIHARA  Akihiko AKASEGAWA  Masatoshi ISHII  Teru NAKANISHI  

     
    INVITED PAPER

      Vol:
    E92-C No:3
      Page(s):
    288-295

    We report on the spurious suppression effect in low-microwave power transmitters by high temperature superconducting (HTS) bandpass filters (BPFs) which are promising for devices requiring BPFs with high-frequency selectivity. Some of the major issues on the power BPFs with HTS planar circuits for wireless communication applications are reviewed. As a case study for the HTS filter and its spurious suppression effect, this paper describes an example of the measured power spectrum density (PSD) on the suppression effect by one of our developed power BPFs with YBCO films for the 5 GHz band. It was designed with equivalent cascade resonators of 16 poles. We demonstrated the effect by HTS power filter in a power amplifier for the 5 GHz band.

  • Spurious Reduction Techniques for DDS-Based Synthesizers

    Jianming ZHOU  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:2
      Page(s):
    252-257

    This paper analyzes the spurious sources in DDS synthesizers and deduces the simple model of DDS output signal. The method of feeding pseudo-random noise into the phase accumulator for spurious reduction is discussed. A new method for spurious reduction by compensating for DAC integer nonlinearity is proposed with two DACs and a power combiner. One DAC generates the error signal to compensate for the other DAC INL. The factor how the amplitude error and the phase error between the two combined signals affect the spurious level is also analyzed. The experiment shows that the spurious reduction can be improved by at least 18 dB, which proves the validity of the DAC INL compensation method for the spurious reduction.

  • Reduction of Charge Injection and Current-Mismatch Errors of Charge Pump for Phase-Locked Loop

    Masahiro YOSHIOKA  Nobuo FUJII  

     
    PAPER

      Vol:
    E92-A No:2
      Page(s):
    381-388

    This paper proposes a new charge pump to suppress spurious noise of phase-locked loops. The spurious noise is induced by charge injection generated from the parasitic capacitors associated with switches and the current-mismatch between the charging and discharging currents of the charge pump. A new charge pump is configured by adding an operational amplifier, a sample-and-hold circuit, and switches to a basic charge pump. During the idling time of the charge pump, the currents of the current sources are adjusted and the current-mismatch are reduced to 0.3%. Applying the proposed charge pump to a phase-locked loop, we can suppress the spurious noise by 18 dB compared with a PLL using a basic one.

  • Artificial Dielectric Resonator Made of Spherical Metal Particles

    Ikuo AWAI  Osamu MIZUE  Arun Kumar SAHA  

     
    PAPER

      Vol:
    E92-C No:1
      Page(s):
    72-76

    A microwave resonator is fabricated by a lump of spherical metal particles for the first time. It is the evidence that those particles constitute artificial dielectrics. The effective permittivity is calculated numerically together with the permeability. Resonant mode frequencies in the experiment are compared with the theoretical result obtained by the effective material constants above. Their reasonable agreement indicates the validity of material constant extraction. The unique diamagnetism of spherical particles could be utilized for improvement of spurious property of a resonator.

  • A Very Low Spurious X-Band Frequency Quadrupler with Very High Integration Using 3D-MMIC Technology

    Yo YAMAGUCHI  Takana KAHO  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E91-C No:11
      Page(s):
    1744-1750

    A highly integrated frequency quadrupler MMIC that uses three-dimensional MMIC (3D-MMIC) technology is presented. It consists of four driver amplifiers, two doublers, and a 2-band elimination filter. These seven circuits are integrated in only a 2.36 mm2 area. The filter sufficiently suppresses spurious output components. The third and fifth harmonic components, which are the spurious components nearest to the desired component, are well suppressed. The desired/undesired ratio is about 40 dB. The driver amplifiers make the quadrupler output a constant power of the desired multiplied signal under low input power. The MMIC supplies +5 dBm of the fourth harmonic component in the input power range from -10 dBm to +5 dBm. The power dissipation of the MMIC is only 160 mW.

  • A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW

    Min-Hang WENG  Chang-Sin YE  Cheng-Yuan HUNG  Chun-Yueh HUANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:2
      Page(s):
    224-227

    A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.

1-20hit(45hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.