Takuya INOUE Menaka DE ZOYSA Takashi ASANO Susumu NODA
Development of narrowband thermal emitters whose emission wavelengths are dynamically tunable is highly desired for various applications including the sensing of gases and chemical compounds. In this paper, we review our recent demonstration of wavelength-switchable mid-infrared thermal emitters based on multiple quantum wells (MQWs) and photonic crystals (PCs). Through the control of absorptivity by using intersubband transitions in MQWs and optical resonances in PC slabs, we demonstrate novel control of thermal emission, including realization of high-Q (Q>100) thermal emission, dynamic control of thermal emission (∼MHz), and electrical wavelength switching of thermal emission from a single device.
Wenjie YU Xunbo LI Zhi ZENG Xiang LI Jian LIU
In this paper, the problem of lifetime extension of wireless sensor networks (WSNs) with redundant sensor nodes deployed in 3D vegetation-covered fields is modeled, which includes building communication models, network model and energy model. Generally, such a problem cannot be solved by a conventional method directly. Here we propose an Artificial Bee Colony (ABC) based optimal grouping algorithm (ABC-OG) to solve it. The main contribution of the algorithm is to find the optimal number of feasible subsets (FSs) of WSN and assign them to work in rotation. It is verified that reasonably grouping sensors into FSs can average the network energy consumption and prolong the lifetime of the network. In order to further verify the effectiveness of ABC-OG, two other algorithms are included for comparison. The experimental results show that the proposed ABC-OG algorithm provides better optimization performance.
Yuta ISHIDA Yusuke KAMEDA Tomokazu ISHIKAWA Ichiro MATSUDA Susumu ITOH
This paper proposes a lossy image coding method for still images. In this method, recursive and non-recursive type intra prediction techniques are adaptively selected on a block-by-block basis. The recursive-type intra prediction technique applies a linear predictor to each pel within a prediction block in a recursive manner, and thus typically produces smooth image values. In this paper, the non-recursive type intra prediction technique is extended from the angular prediction technique adopted in the H.265/HEVC video coding standard to enable interpolative prediction to the maximum possible extent. The experimental results indicate that the proposed method achieves better coding performance than the conventional method that only uses the recursive-type prediction technique.
Ken-ichiro MORIDOMI Kohei HATANO Eiji TAKIMOTO
We consider online linear optimization over symmetric positive semi-definite matrices, which has various applications including the online collaborative filtering. The problem is formulated as a repeated game between the algorithm and the adversary, where in each round t the algorithm and the adversary choose matrices Xt and Lt, respectively, and then the algorithm suffers a loss given by the Frobenius inner product of Xt and Lt. The goal of the algorithm is to minimize the cumulative loss. We can employ a standard framework called Follow the Regularized Leader (FTRL) for designing algorithms, where we need to choose an appropriate regularization function to obtain a good performance guarantee. We show that the log-determinant regularization works better than other popular regularization functions in the case where the loss matrices Lt are all sparse. Using this property, we show that our algorithm achieves an optimal performance guarantee for the online collaborative filtering. The technical contribution of the paper is to develop a new technique of deriving performance bounds by exploiting the property of strong convexity of the log-determinant with respect to the loss matrices, while in the previous analysis the strong convexity is defined with respect to a norm. Intuitively, skipping the norm analysis results in the improved bound. Moreover, we apply our method to online linear optimization over vectors and show that the FTRL with the Burg entropy regularizer, which is the analogue of the log-determinant regularizer in the vector case, works well.
Takuya KOJIMA Naoki ANDO Hayate OKUHARA Ng. Anh Vu DOAN Hideharu AMANO
Variable Pipeline Cool Mega Array (VPCMA) is a low power Coarse Grained Reconfigurable Architecture (CGRA) based on the concept of CMA (Cool Mega Array). It provides a pipeline structure in the PE array that can be configured so as to fit target algorithms and required performance. Also, VPCMA uses the Silicon On Thin Buried oxide (SOTB) technology, a type of Fully Depleted Silicon On Insulator (FDSOI), so it is possible to control its body bias voltage to provide a balance between performance and leakage power. In this paper, we study the optimization of the VPCMA body bias while considering simultaneously its variable pipeline structure. Through evaluations, we can observe that it is possible to achieve an average reduction of energy consumption, for the studied applications, of 17.75% and 10.49% when compared to respectively the zero bias (without body bias control) and the uniform (control of the whole PE array) cases, while respecting performance constraints. Besides, it is observed that, with appropriate body bias control, it is possible to extend the possible performance, hence enabling broader trade-off analyzes between consumption and performance. Considering the dynamic power as well as the static power, more appropriate pipeline structure and body bias voltage can be obtained. In addition, when the control of VDD is integrated, higher performance can be achieved with a steady increase of the power. These promising results show that applying an adequate optimization technique for the body bias control while simultaneously considering pipeline structures can not only enable further power reduction than previous methods, but also allow more trade-off analysis possibilities.
Several new memories are being studied as candidates of future DRAM that seems difficult to be scaled. However, the read signal in these new memories needs to be amplified in a single-end manner with reference signal supplied if they are aimed for being applied to the high-density main memory. This scheme, which is fortunately not necessary in DRAM's 1/2Vdd pre-charge sense amp, can become a serious bottleneck in the new memory development, because the device electrical parameters in these new memory cells are prone to large cell-to-cell variations without exception. Furthermore, the extent to which the parameter fluctuates in data “1” is generally not the same as in data “0”. In these situations, a new sensing scheme is proposed that can minimize the sensing error rate for high-density single-end emerging memories like STT-MRAM, ReRAM and PCRAM. The scheme is based on averaging multiple dummy cell pairs that are written “1” and “0” in a weighted manner according to the fluctuation unbalance between “1” and “0”. A detailed analysis shows that this scheme is effective in designing 128Mb 1T1MTJ STT-MRAM with the results that the required TMR ratio of an MTJ can be relaxed from 130% to 90% for the fluctuation of 6% sigma-to-average ratio of MTJ resistance in a 16 pair-dummy cell averaging case by using this technology when compared with the arithmetic averaging method.
Ngochao TRAN Tetsuro IMAI Koshiro KITAO Yukihiko OKUMURA Takehiro NAKAMURA Hiroshi TOKUDA Takao MIYAKE Robin WANG Zhu WEN Hajime KITANO Roger NICHOLS
The fifth generation (5G) system using millimeter waves is considered for application to high traffic areas with a dense population of pedestrians. In such an environment, the effects of shadowing and scattering of radio waves by human bodies (HBs) on propagation channels cannot be ignored. In this paper, we clarify based on measurement the characteristics of waves scattered by the HB for typical non-line-of-sight scenarios in street canyon environments. In these scenarios, there are street intersections with pedestrians, and the angles that are formed by the transmission point, HB, and reception point are nearly equal to 90 degrees. We use a wide-band channel sounder for the 67-GHz band with a 1-GHz bandwidth and horn antennas in the measurements. The distance parameter between antennas and the HB is changed in the measurements. Moreover, the direction of the HB is changed from 0 to 360 degrees. The evaluation results show that the radar cross section (RCS) of the HB fluctuates randomly over the range of approximately 20dB. Moreover, the distribution of the RCS of the HB is a Gaussian distribution with a mean value of -9.4dBsm and the standard deviation of 4.2dBsm.
Jiali YOU Hanxing XUE Yu ZHUO Xin ZHANG Jinlin WANG
Predicting the service performance of Internet applications is important in service selection, especially for video services. In order to design a predictor for forecasting video service performance in third-party application, two famous service providers in China, Iqiyi and Letv, are monitored and analyzed. The study highlights that the measured performance in the observation period is time-series data, and it has strong autocorrelation, which means it is predictable. In order to combine the temporal information and map the measured data to a proper feature space, the authors propose a predictor based on a Conditional Restricted Boltzmann Machine (CRBM), which can capture the potential temporal relationship of the historical information. Meanwhile, the measured data of different sources are combined to enhance the training process, which can enlarge the training size and avoid the over-fit problem. Experiments show that combining the measured results from different resolutions for a video can raise prediction performance, and the CRBM algorithm shows better prediction ability and more stable performance than the baseline algorithms.
Masahiro YAMAGUCHI Trong Phuc TRUONG Shohei MORI Vincent NOZICK Hideo SAITO Shoji YACHIDA Hideaki SATO
In this paper, we propose a method to generate a three-dimensional (3D) thermal map and RGB + thermal (RGB-T) images of a scene from thermal-infrared and RGB images. The scene images are acquired by moving both a RGB camera and an thermal-infrared camera mounted on a stereo rig. Before capturing the scene with those cameras, we estimate their respective intrinsic parameters and their relative pose. Then, we reconstruct the 3D structures of the scene by using Direct Sparse Odometry (DSO) using the RGB images. In order to superimpose thermal information onto each point generated from DSO, we propose a method for estimating the scale of the point cloud corresponding to the extrinsic parameters between both cameras by matching depth images recovered from the RGB camera and the thermal-infrared camera based on mutual information. We also generate RGB-T images using the 3D structure of the scene and Delaunay triangulation. We do not rely on depth cameras and, therefore, our technique is not limited to scenes within the measurement range of the depth cameras. To demonstrate this technique, we generate 3D thermal maps and RGB-T images for both indoor and outdoor scenes.
Qian LI Xiaojuan LI Bin WU Yunpeng XIAO
In social networks, predicting user behavior under social hotspots can aid in understanding the development trend of a topic. In this paper, we propose a retweeting prediction method for social hotspots based on tensor decomposition, using user information, relationship and behavioral data. The method can be used to predict the behavior of users and analyze the evolvement of topics. Firstly, we propose a tensor-based mechanism for mining user interaction, and then we propose that the tensor be used to solve the problem of inaccuracy that arises when interactively calculating intensity for sparse user interaction data. At the same time, we can analyze the influence of the following relationship on the interaction between users based on characteristics of the tensor in data space conversion and projection. Secondly, time decay function is introduced for the tensor to quantify further the evolution of user behavior in current social hotspots. That function can be fit to the behavior of a user dynamically, and can also solve the problem of interaction between users with time decay. Finally, we invoke time slices and discretization of the topic life cycle and construct a user retweeting prediction model based on logistic regression. In this way, we can both explore the temporal characteristics of user behavior in social hotspots and also solve the problem of uneven interaction behavior between users. Experiments show that the proposed method can improve the accuracy of user behavior prediction effectively and aid in understanding the development trend of a topic.
Lei CHEN Wei LU Ergude BAO Liqiang WANG Weiwei XING Yuanyuan CAI
MapReduce is an effective framework for processing large datasets in parallel over a cluster. Data locality and data skew on the reduce side are two essential issues in MapReduce. Improving data locality can decrease network traffic by moving reduce tasks to the nodes where the reducer input data is located. Data skew will lead to load imbalance among reducer nodes. Partitioning is an important feature of MapReduce because it determines the reducer nodes to which map output results will be sent. Therefore, an effective partitioner can improve MapReduce performance by increasing data locality and decreasing data skew on the reduce side. Previous studies considering both essential issues can be divided into two categories: those that preferentially improve data locality, such as LEEN, and those that preferentially improve load balance, such as CLP. However, all these studies ignore the fact that for different types of jobs, the priority of data locality and data skew on the reduce side may produce different effects on the execution time. In this paper, we propose a naive Bayes classifier based partitioner, namely, BAPM, which achieves better performance because it can automatically choose the proper algorithm (LEEN or CLP) by leveraging the naive Bayes classifier, i.e., considering job type and bandwidth as classification attributes. Our experiments are performed in a Hadoop cluster, and the results show that BAPM boosts the computing performance of MapReduce. The selection accuracy reaches 95.15%. Further, compared with other popular algorithms, under specific bandwidths, the improvement BAPM achieved is up to 31.31%.
Chunyan HOU Chen CHEN Jinsong WANG
In the era of e-commerce, purchase behavior prediction is one of the most important issues to promote both online companies' sales and the consumers' experience. The previous researches usually use the feature engineering and ensemble machine learning algorithms for the prediction. The performance really depends on designed features and the scalability of algorithms because the large-scale data and a lot of categorical features lead to huge samples and the high-dimensional feature. In this study, we explore an alternative to use tree-based Feature Transformation (FT) and simple machine learning algorithms (e.g. Logistic Regression). Random Forest (RF) and Gradient Boosting decision tree (GB) are used for FT. Then, the simple algorithm, rather than ensemble algorithms, is used to predict purchase behavior based on transformed features. Tree-based FT regards the leaves of trees as transformed features, and can learn high-order interactions among original features. Compared with RF, if GB is used for FT, simple algorithms are enough to achieve better performance.
This paper studies a wireless powered communication network (WPCN) with non-orthogonal multiple access (NOMA) under successive interference cancellation (SIC) constraints, where the users first harvest energy from the power station and then transmit data to the information receiver simultaneously. Under this setup, we investigate the system throughput maximization problem. We first formulate an optimization problem for a general case, which is non-convex. To derive the optimal solution, new variables are introduced to transform the initial problem into a convex optimization problem. For a special case, i.e., two-user case, the optimal solution is derived as a closed-form expression. Simulations on the effect of SIC constraints show the importance of the distinctness among users' channels for the proposed model.
Recently, the join processing of large-scale datasets in MapReduce environments has become an important issue. However, the existing MapReduce-based join algorithms suffer from too much overhead for constructing and updating the data index. Moreover, the similarity computation cost is high because the existing algorithms partition data without considering the data distribution. In this paper, we propose two grid-based join algorithms for MapReduce. First, we propose a similarity join algorithm that evenly distributes join candidates using a dynamic grid index, which partitions data considering data density and similarity threshold. We use a bottom-up approach by merging initial grid cells into partitions and assigning them to MapReduce jobs. Second, we propose a k-NN join query processing algorithm for MapReduce. To reduce the data transmission cost, we determine an optimal grid cell size by considering the data distribution of randomly selected samples. Then, we perform kNN join by assigning the only related join data to a reducer. From performance analysis, we show that our similarity join query processing algorithm and our k-NN join algorithm outperform existing algorithms by up to 10 times, in terms of query processing time.
KyungRak LEE SungRyung CHO JaeWon LEE Inwhee JOE
This paper proposes the mesh-topology based wireless-powered communication network (MT-WPCN), which consists of a hybrid-access point (H-AP) and nodes. The H-AP broadcasts energy to all nodes by wireless, and the nodes harvest the energy and then communicate with other nodes including the H-AP. For the communication in the MT-WPCN, we propose the harvest-then-transceive protocol to ensure that the nodes can harvest energy from the H-AP and transmit information selectively to the H-AP or other nodes, which is not supported in most protocols proposed for the conventional WPCN. In the proposed protocol, we consider that the energy harvesting can be interrupted at nodes, since the nodes cannot harvest energy during transmission or reception. We also consider that the harvested energy is consumed by the reception of information from other nodes. In addition, the energy reservation model is required to guarantee the QoS, which reserves the infimum energy to receive information reliably by the transmission power control. Under these considerations, first, we design the half harvest-then-transceive protocol, which indicates that a node transmits information only to other nodes which do not transmit information yet, for investing the effect of the energy harvesting interruption. Secondly, we also design the full harvest-then-transceive protocol for the information exchange among nodes and compatibility with the conventional star-topology based WPCN, which indicates that a node can transmit information to any network unit, i.e., the H-AP and all nodes. We study the sum-throughput maximization in the MT-WPCN based on the half and full harvest-then-transceive protocols, respectively. Furthermore, the amount of harvested energy is analytically compared according to the energy harvesting interruption in the protocols. Simulation results show that the proposed MT-WPCN outperforms the conventional star-topology based WPCN in terms of the sum-throughput maximization, when wireless information transmission among nodes occurs frequently.
Tao LIANG Flavia GRASSI Giordano SPADACINI Sergio Amedeo PIGNARI
This work presents a hybrid formulation of the stochastic reduced order model (SROM) algorithm, which makes use of Gauss quadrature, a key ingredient of the stochastic collocation method, to avoid the cumbersome optimization process required by SROM for optimal extraction of the sample set. With respect to classic SROM algorithms, the proposed formulation allows a significant reduction in computation time and burden as well as a remarkable improvement in the accuracy and convergence rate in the estimation of statistical moments. The method is here applied to a specific case study, that is the prediction of crosstalk in a two-conductor wiring structure with electrical and geometrical parameters not perfectly known. Both univariate and multivariate analyses are carried out, with the final objective being to compare the performance of the two SROM formulations with respected to Monte Carlo simulations.
Takashi MATSUBARA Ryo AKITA Kuniaki UEHARA
In this study, we propose a deep neural generative model for predicting daily stock price movements given news articles. Approaches involving conventional technical analysis have been investigated to identify certain patterns in past price movements, which in turn helps to predict future price movements. However, the financial market is highly sensitive to specific events, including corporate buyouts, product releases, and the like. Therefore, recent research has focused on modeling relationships between these events that appear in the news articles and future price movements; however, a very large number of news articles are published daily, each article containing rich information, which results in overfitting to past price movements used for parameter adjustment. Given the above, we propose a model based on a generative model of news articles that includes price movement as a condition, thereby avoiding excessive overfitting thanks to the nature of the generative model. We evaluate our proposed model using historical price movements of Nikkei 225 and Standard & Poor's 500 Stock Index, confirming that our model predicts future price movements better than such conventional classifiers as support vector machines and multilayer perceptrons. Further, our proposed model extracts significant words from news articles that are directly related to future stock price movements.
Jianbin ZHOU Dajiang ZHOU Takeshi YOSHIMURA Satoshi GOTO
Compressed Sensing based CMOS image sensor (CS-CIS) is a new generation of CMOS image sensor that significantly reduces the power consumption. For CS-CIS, the image quality and data volume of output are two important issues to concern. In this paper, we first proposed an algorithm to generate a series of deterministic and ternary matrices, which improves the image quality, reduces the data volume and are compatible with CS-CIS. Proposed matrices are derived from the approximate DCT and trimmed in 2D-zigzag order, thus preserving the energy compaction property as DCT does. Moreover, we proposed matrix row operations adaptive to the proposed matrix to further compress data (measurements) without any image quality loss. At last, a low-cost VLSI architecture of measurements compression with proposed matrix row operations is implemented. Experiment results show our proposed matrix significantly improve the coding efficiency by BD-PSNR increase of 4.2 dB, comparing with the random binary matrix used in the-state-of-art CS-CIS. The proposed matrix row operations for measurement compression further increases the coding efficiency by 0.24 dB BD-PSNR (4.8% BD-rate reduction). The VLSI architecture is only 4.3 K gates in area and 0.3 mW in power consumption.
This paper introduces a filter level pruning method based on similar feature extraction for compressing and accelerating the convolutional neural networks by k-means++ algorithm. In contrast to other pruning methods, the proposed method would analyze the similarities in recognizing features among filters rather than evaluate the importance of filters to prune the redundant ones. This strategy would be more reasonable and effective. Furthermore, our method does not result in unstructured network. As a result, it needs not extra sparse representation and could be efficiently supported by any off-the-shelf deep learning libraries. Experimental results show that our filter pruning method could reduce the number of parameters and the amount of computational costs in Lenet-5 by a factor of 17.9× with only 0.3% accuracy loss.
Yu YU Stepan KUCERA Yuto LIM Yasuo TAN
In mobile and wireless networks, controlling data delivery latency is one of open problems due to the stochastic nature of wireless channels, which are inherently unreliable. This paper explores how the current best-effort throughput-oriented wireless services might evolve into latency-sensitive enablers of new mobile applications such as remote three-dimensional (3D) graphical rendering for interactive virtual/augmented-reality overlay. Assuming that the signal propagation delay and achievable throughput meet the standard latency requirements of the user application, we examine the idea of trading excess/federated bandwidth for the elimination of non-negligible delay of data re-ordering, caused by temporal transmission failures and buffer overflows. The general system design is based on (i) spatially diverse data delivery over multiple paths with uncorrelated outage likelihoods; and (ii) forward packet-loss protection (FPP), creating encoding redundancy for proactive recovery of intolerably delayed data without end-to-end retransmissions. Analysis and evaluation are based on traces of real life traffic, which is measured in live carrier-grade long term evolution (LTE) networks and campus WiFi networks, due to no such system/environment yet to verify the importance of spatial diversity and encoding redundancy. Analysis and evaluation reveal the seriousness of the latency problem and that the proposed FPP with spatial diversity and encoding redundancy can minimize the delay of re-ordering. Moreover, a novel FPP effectiveness coefficient is proposed to explicitly represent the effectiveness of EPP implementation.