Keyword Search Result

[Keyword] RED(1942hit)

61-80hit(1942hit)

  • Effectiveness of Feature Extraction System for Multimodal Sensor Information Based on VRAE and Its Application to Object Recognition

    Kazuki HAYASHI  Daisuke TANAKA  

     
    LETTER-Object Recognition and Tracking

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:5
      Page(s):
    833-835

    To achieve object recognition, it is necessary to find the unique features of the objects to be recognized. Results in prior research suggest that methods that use multiple modalities information are effective to find the unique features. In this paper, the overview of the system that can extract the features of the objects to be recognized by integrating visual, tactile, and auditory information as multimodal sensor information with VRAE is shown. Furthermore, a discussion about changing the combination of modalities information is also shown.

  • An Identifier Locator Separation Protocol for the Shared Prefix Model over IEEE WAVE IPv6 Networks Open Access

    Sangjin NAM  Sung-Gi MIN  

     
    PAPER-Network

      Pubricized:
    2022/10/21
      Vol:
    E106-B No:4
      Page(s):
    317-330

    As the active safety of vehicles has become essential, vehicular communication has been gaining attention. The IETF IPWAVE working group has proposed the shared prefix model-based vehicular link model. In the shared prefix model, a prefix is shared among RSUs to prevent changes in IPv6 addresses of a vehicle within a shared prefix domain. However, vehicle movement must be tracked to deliver packets to the serving RSU of the vehicle within a shared prefix domain. The Identifier/Locator Separation Protocol (ILSP) is one of the techniques used to handle vehicle movement. It has several drawbacks such as the inability to communicate with a standard IPv6 module without special components and the requirement to pass signaling messages between end hosts. Such drawbacks severely limit the service availability for a vehicle in the Internet. We propose an ILSP for a shared prefix model over IEEE WAVE IPv6 networks. The proposed protocol supports IPv6 communication between a standard IPv6 node in the Internet and a vehicle supporting the proposed protocol. In addition, the protocol hides vehicle movement within a shared prefix domain to peer hosts, eliminating the signaling between end hosts. The proposed protocol introduces a special NDP module based on IETF IPWAVE vehicular NDP to support vehicular mobility management within a shared prefix domain and minimize link-level multicast in WAVE networks.

  • A Beam Search Method with Adaptive Beam Width Control Based on Area Size for Initial Access

    Takuto ARAI  Daisei UCHIDA  Tatsuhiko IWAKUNI  Shuki WAI  Naoki KITA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    359-366

    High gain antennas with narrow-beamforming are required to compensate for the high propagation loss expected in high frequency bands such as the millimeter wave and sub-terahertz wave bands, which are promising for achieving extremely high speeds and capacity. However using narrow-beamforming for initial access (IA) beam search in all directions incurs an excessive overhead. Using wide-beamforming can reduce the overhead for IA but it also shrinks the coverage area due to the lower beamforming gain. Here, it is assumed that there are some situations in which the required coverage distance differs depending on the direction from the antenna. For example, the distance to an floor for a ceiling-mounted antenna varies depending on the direction, and the distance to the obstruction becomes the required coverage distance for an antenna installation design that assumes line-of-sight. In this paper, we propose a novel IA beam search scheme with adaptive beam width control based on the distance to shield obstacles in each direction. Simulations and experiments show that the proposed method reduces the overhead by 20%-50% without shrinking the coverage area in shield environments compared to exhaustive beam search with narrow-beamforming.

  • An Interpretation Method on Amplitude Intensities for Response Waveforms of Backward Transient Scattered Field Components by a 2-D Coated Metal Cylinder

    Keiji GOTO  Toru KAWANO  

     
    PAPER

      Pubricized:
    2022/09/29
      Vol:
    E106-C No:4
      Page(s):
    118-126

    In this paper, we propose an interpretation method on amplitude intensities for response waveforms of backward transient scattered field components for both E- and H-polarizations by a 2-D coated metal cylinder. A time-domain (TD) asymptotic solution, which is referred to as a TD Fourier transform method (TD-FTM), is derived by applying the FTM to a backward transient scattered field expressed by an integral form. The TD-FTM is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series. We use the TD-FTM to derive amplitude intensity ratios (AIRs) between adjacent backward transient scattered field components. By comparing the numerical values of the AIRs with those of the influence factors that compose the AIRs, major factor(s) can be identified, thereby allowing detailed interpretation method on the amplitude intensities for the response waveforms of backward transient scattered field components. The accuracy and practicality of the TD-FTM are evaluated by comparing it with three reference solutions. The effectiveness of an interpretation method on the amplitude intensities for response waveforms of backward transient scattered field components is revealed by identifying major factor(s) affecting the amplitude intensities.

  • An Efficient Combined Bit-Width Reducing Method for Ising Models

    Yuta YACHI  Masashi TAWADA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:4
      Page(s):
    495-508

    Annealing machines such as quantum annealing machines and semiconductor-based annealing machines have been attracting attention as an efficient computing alternative for solving combinatorial optimization problems. They solve original combinatorial optimization problems by transforming them into a data structure called an Ising model. At that time, the bit-widths of the coefficients of the Ising model have to be kept within the range that an annealing machine can deal with. However, by reducing the Ising-model bit-widths, its minimum energy state, or ground state, may become different from that of the original one, and hence the targeted combinatorial optimization problem cannot be well solved. This paper proposes an effective method for reducing Ising model's bit-widths. The proposed method is composed of two processes: First, given an Ising model with large coefficient bit-widths, the shift method is applied to reduce its bit-widths roughly. Second, the spin-adding method is applied to further reduce its bit-widths to those that annealing machines can deal with. Without adding too many extra spins, we efficiently reduce the coefficient bit-widths of the original Ising model. Furthermore, the ground state before and after reducing the coefficient bit-widths is not much changed in most of the practical cases. Experimental evaluations demonstrate the effectiveness of the proposed method, compared to existing methods.

  • Short Lattice Signature Scheme with Tighter Reduction under Ring-SIS Assumption

    Kaisei KAJITA  Go OHTAKE  Kazuto OGAWA  Koji NUIDA  Tsuyoshi TAKAGI  

     
    PAPER

      Pubricized:
    2022/09/08
      Vol:
    E106-A No:3
      Page(s):
    228-240

    We propose a short signature scheme under the ring-SIS assumption in the standard model. Specifically, by revisiting an existing construction [Ducas and Micciancio, CRYPTO 2014], we demonstrate lattice-based signatures with improved reduction loss. As far as we know, there are no ways to use multiple tags in the signature simulation of security proof in the lattice tag-based signatures. We address the tag-collision possibility in the lattice setting, which improves reduction loss. Our scheme generates tags from messages by constructing a scheme under a mild security condition that is existentially unforgeable against random message attack with auxiliary information. Thus our scheme can reduce the signature size since it does not need to send tags with the signatures. Our scheme has short signature sizes of O(1) and achieves tighter reduction loss than that of Ducas et al.'s scheme. Our proposed scheme has two variants. Our scheme with one property has tighter reduction and the same verification key size of O(log n) as that of Ducas et al.'s scheme, where n is the security parameter. Our scheme with the other property achieves much tighter reduction loss of O(Q/n) and verification key size of O(n), where Q is the number of signing queries.

  • Secure Revocation Features in eKYC - Privacy Protection in Central Bank Digital Currency

    Kazuo TAKARAGI  Takashi KUBOTA  Sven WOHLGEMUTH  Katsuyuki UMEZAWA  Hiroki KOYANAGI  

     
    PAPER

      Pubricized:
    2022/10/07
      Vol:
    E106-A No:3
      Page(s):
    325-332

    Central bank digital currencies require the implementation of eKYC to verify whether a trading customer is eligible online. When an organization issues an ID proof of a customer for eKYC, that proof is usually achieved in practice by a hierarchy of issuers. However, the customer wants to disclose only part of the issuer's chain and documents to the trading partner due to privacy concerns. In this research, delegatable anonymous credential (DAC) and zero-knowledge range proof (ZKRP) allow customers to arbitrarily change parts of the delegation chain and message body to range proofs expressed in inequalities. That way, customers can protect the privacy they need with their own control. Zero-knowledge proof is applied to prove the inequality between two time stamps by the time stamp server (signature presentation, public key revocation, or non-revocation) without disclosing the signature content and stamped time. It makes it possible to prove that the registration information of the national ID card is valid or invalid while keeping the user's personal information anonymous. This research aims to contribute to the realization of a sustainable financial system based on self-sovereign identity management with privacy-enhanced PKI.

  • Sub-Signal Channel Modulation for Hitless Redundancy Switching Systems

    Takahiro KUBO  Yuhei KAWAKAMI  Hironao ABE  Natsuki YASUHARA  Hideo KAWATA  Shinichi YOSHIHARA  Tomoaki YOSHIDA  

     
    PAPER-Network System

      Pubricized:
    2022/09/12
      Vol:
    E106-B No:3
      Page(s):
    221-229

    This paper proposes a sub-signal channel modulation scheme for hitless redundancy switching systems that offers highly confidential communications. A hitless redundancy switching system prevents frame loss by using multiple routes to forward the same frame. Although most studies on redundancy switching systems deal with frame duplication, elimination, and selection of redundant paths for the main signal, we focus on the transmission of the sub-signal channel. We introduce mathematical expressions to model the transmission rate and bit error rate of the sub-signal channel. To evaluate the validity of the models, we conduct numerical simulations to calculate the sub-signal transmission rate, main-signal transmission rate, and bit error rate of the sub-signal channel at physical transmission rates of 100Mb/s, 1Gb/s, and 10Gb/s. We discuss how to design sub-signal channel modulation on the basis of the evaluation results. We further discuss applications of sub-signal modulation in terms of network size and jitter.

  • Bending Loss Analysis of Chalcogenide Glass Channel Waveguides for Mid-Infrared Astrophotonic Devices Open Access

    Takashi YASUI  Jun-ichiro SUGISAKA  Koichi HIRAYAMA  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2022/08/25
      Vol:
    E106-C No:3
      Page(s):
    107-110

    In this study, the bending losses of chalcogenide glass channel optical waveguides consisting of an As2Se3 core and an As2S3 lower cladding layer were numerically evaluated across the astronomical N-band, which is the mid-infrared spectral range between the 8 µm and 12 µm wavelengths. The results reveal the design rules for bent waveguides in mid-infrared astrophotonic devices.

  • An Interactive and Reductive Graph Processing Library for Edge Computing in Smart Society

    Jun ZHOU  Masaaki KONDO  

     
    PAPER

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:3
      Page(s):
    319-327

    Due to the limitations of cloud computing on latency, bandwidth and data confidentiality, edge computing has emerged as a novel location-aware paradigm to provide them with more processing capacity to improve the computing performance and quality of service (QoS) in several typical domains of human activity in smart society, such as social networks, medical diagnosis, telecommunications, recommendation systems, internal threat detection, transports, Internet of Things (IoT), etc. These application domains often handle a vast collection of entities with various relationships, which can be naturally represented by the graph data structure. Graph processing is a powerful tool to model and optimize complex problems in which the graph-based data is involved. In view of the relatively insufficient resource provisioning of the portable terminals, in this paper, for the first time to our knowledge, we propose an interactive and reductive graph processing library (GPL) for edge computing in smart society at low overhead. Experimental evaluation is conducted to indicate that the proposed GPL is more user-friendly and highly competitive compared with other established systems, such as igraph, NetworKit and NetworkX, based on different graph datasets over a variety of popular algorithms.

  • Chinese Lexical Sememe Prediction Using CilinE Knowledge

    Hao WANG  Sirui LIU  Jianyong DUAN  Li HE  Xin LI  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Pubricized:
    2022/08/18
      Vol:
    E106-A No:2
      Page(s):
    146-153

    Sememes are the smallest semantic units of human languages, the composition of which can represent the meaning of words. Sememes have been successfully applied to many downstream applications in natural language processing (NLP) field. Annotation of a word's sememes depends on language experts, which is both time-consuming and labor-consuming, limiting the large-scale application of sememe. Researchers have proposed some sememe prediction methods to automatically predict sememes for words. However, existing sememe prediction methods focus on information of the word itself, ignoring the expert-annotated knowledge bases which indicate the relations between words and should value in sememe predication. Therefore, we aim at incorporating the expert-annotated knowledge bases into sememe prediction process. To achieve that, we propose a CilinE-guided sememe prediction model which employs an existing word knowledge base CilinE to remodel the sememe prediction from relational perspective. Experiments on HowNet, a widely used Chinese sememe knowledge base, have shown that CilinE has an obvious positive effect on sememe prediction. Furthermore, our proposed method can be integrated into existing methods and significantly improves the prediction performance. We will release the data and code to the public.

  • Commit-Based Class-Level Defect Prediction for Python Projects

    Khine Yin MON  Masanari KONDO  Eunjong CHOI  Osamu MIZUNO  

     
    PAPER

      Pubricized:
    2022/11/14
      Vol:
    E106-D No:2
      Page(s):
    157-165

    Defect prediction approaches have been greatly contributing to software quality assurance activities such as code review or unit testing. Just-in-time defect prediction approaches are developed to predict whether a commit is a defect-inducing commit or not. Prior research has shown that commit-level prediction is not enough in terms of effort, and a defective commit may contain both defective and non-defective files. As the defect prediction community is promoting fine-grained granularity prediction approaches, we propose our novel class-level prediction, which is finer-grained than the file-level prediction, based on the files of the commits in this research. We designed our model for Python projects and tested it with ten open-source Python projects. We performed our experiment with two settings: setting with product metrics only and setting with product metrics plus commit information. Our investigation was conducted with three different classifiers and two validation strategies. We found that our model developed by random forest classifier performs the best, and commit information contributes significantly to the product metrics in 10-fold cross-validation. We also created a commit-based file-level prediction for the Python files which do not have the classes. The file-level model also showed a similar condition as the class-level model. However, the results showed a massive deviation in time-series validation for both levels and the challenge of predicting Python classes and files in a realistic scenario.

  • A Comparative Study of Data Collection Periods for Just-In-Time Defect Prediction Using the Automatic Machine Learning Method

    Kosuke OHARA  Hirohisa AMAN  Sousuke AMASAKI  Tomoyuki YOKOGAWA  Minoru KAWAHARA  

     
    LETTER

      Pubricized:
    2022/11/11
      Vol:
    E106-D No:2
      Page(s):
    166-169

    This paper focuses on the “data collection period” for training a better Just-In-Time (JIT) defect prediction model — the early commit data vs. the recent one —, and conducts a large-scale comparative study to explore an appropriate data collection period. Since there are many possible machine learning algorithms for training defect prediction models, the selection of machine learning algorithms can become a threat to validity. Hence, this study adopts the automatic machine learning method to mitigate the selection bias in the comparative study. The empirical results using 122 open-source software projects prove the trend that the dataset composed of the recent commits would become a better training set for JIT defect prediction models.

  • Superposition Signal Input Decoding for Lattice Reduction-Aided MIMO Receivers Open Access

    Satoshi DENNO  Koki KASHIHARA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    184-192

    This paper proposes a novel approach to low complexity soft input decoding for lattice reduction-aided MIMO receivers. The proposed approach feeds a soft input decoder with soft signals made from hard decision signals generated by using a lattice reduction-aided linear detector. The soft signal is a weighted-sum of some candidate vectors that are near by the hard decision signal coming out from the lattice reduction-aided linear detector. This paper proposes a technique to adjust the weight adapt to the channel for the higher transmission performance. Furthermore, we propose to introduce a coefficient that is used for the weights in order to enhance the transmission performance. The transmission performance is evaluated in a 4×4 MIMO channel. When a linear MMSE filter or a serial interference canceller is used as the linear detector, the proposed technique achieves about 1.0dB better transmission performance at the BER of 10-5 than the decoder fed with the hard decision signals. In addition, the low computational complexity of the proposed technique is quantitatively evaluated.

  • CAA-Net: End-to-End Two-Branch Feature Attention Network for Single Image Dehazing

    Gang JIN  Jingsheng ZHAI  Jianguo WEI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/07/21
      Vol:
    E106-A No:1
      Page(s):
    1-10

    In this paper, we propose an end-to-end two-branch feature attention network. The network is mainly used for single image dehazing. The network consists of two branches, we call it CAA-Net: 1) A U-NET network composed of different-level feature fusion based on attention (FEPA) structure and residual dense block (RDB). In order to make full use of all the hierarchical features of the image, we use RDB. RDB contains dense connected layers and local feature fusion with local residual learning. We also propose a structure which called FEPA.FEPA structure could retain the information of shallow layer and transfer it to the deep layer. FEPA is composed of serveral feature attention modules (FPA). FPA combines local residual learning with channel attention mechanism and pixel attention mechanism, and could extract features from different channels and image pixels. 2) A network composed of several different levels of FEPA structures. The network could make feature weights learn from FPA adaptively, and give more weight to important features. The final output result of CAA-Net is the combination of all branch prediction results. Experimental results show that the CAA-Net proposed by us surpasses the most advanced algorithms before for single image dehazing.

  • Global Asymptotic Stabilization of Feedforward Systems with an Uncertain Delay in the Input by Event-Triggered Control

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2022/06/28
      Vol:
    E106-A No:1
      Page(s):
    69-72

    In this letter, we consider a global stabilization problem for a class of feedforward systems by an event-triggered control. This is an extended work of [10] in a way that there are uncertain feedforward nonlinearity and time-varying input delay in the system. First, we show that the considered system is globally asymptotically stabilized by a proposed event-triggered controller with a gain-scaling factor. Then, we also show that the interexecution times can be enlarged by adjusting a gain-scaling factor. A simulation example is given for illustration.

  • Design, Fabrication, and Evaluation of Waveguide Structure Using Si/CaF2 Heterostructure for Near- and Mid- Infrared Silicon Photonics

    Long LIU  Gensai TEI  Masahiro WATANABE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/07/08
      Vol:
    E106-C No:1
      Page(s):
    1-6

    We have proposed integrated waveguide structure suitable for mid- and near- infrared light propagation using Si and CaF2 heterostructures on Si substrate. Using a fabrication process based on etching, lithography and crystal growth techniques, we have formed a slab-waveguide structure with a current injection mechanism on a SOI substrate, which would be a key component for Si/CaF2 quantum cascade lasers and other optical integrated systems. The propagation of light at a wavelength of 1.55 µm through a Si/CaF2 waveguide structure have been demonstrated for the first time using a structure with a Si/CaF2 multilayered core with 610-nm-thick, waveguide width of 970 nm, which satisfies single-mode condition in the horizontal direction within a tolerance of fabrication accuracy. The waveguide loss for transverse magnetic (TM) mode has been evaluated to be 51.4 cm-1. The cause of the loss was discussed by estimating the edge roughness scattering and free carrier absorption, which suggests further reduction of the loss would be possible.

  • Ground Test of Radio Frequency Compatibility for Cn-Band Satellite Navigation and Microwave Landing System Open Access

    Ruihua LIU  Yin LI  Ling ZOU  Yude NI  

     
    PAPER-Satellite Communications

      Pubricized:
    2022/05/19
      Vol:
    E105-B No:12
      Page(s):
    1580-1588

    Testing the radio frequency compatibility between Cn-band Satellite Navigation and Microwave Landing System (MLS) has included establishing a specific interference model and reporting the effect of such interference. This paper considers two interference scenarios according to the interfered system. By calculating the Power Flux Density (PFD) values, the interference for Cn-band satellite navigation downlink signal from several visible space stations on MLS service is evaluated. Simulation analysis of the interference for MLS DPSK-data word signal and scanning signal on Cn-band satellite navigation signal is based on the Spectral Separation Coefficient (SSC) and equivalent Carrier-to-Noise Ratio methodologies. Ground tests at a particular military airfield equipped with MLS ground stations were successfully carried out, and some measured data verified the theoretical and numerical results. This study will certainly benefit the design of Cn-band satellite navigation signals and guide the interoperability and compatibility research of Cn-band satellite navigation and MLS.

  • 920MHz Path Loss Prediction Formula Based on FDTD Method for IoT Wireless System close to Ceiling with Concrete Beam

    Naotake YAMAMOTO  Taichi SASAKI  Atsushi YAMAMOTO  Tetsuya HISHIKAWA  Kentaro SAITO  Jun-ichi TAKADA  Toshiyuki MAEYAMA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/06/22
      Vol:
    E105-B No:12
      Page(s):
    1540-1547

    A path loss prediction formula for IoT (Internet of Things) wireless communication close to ceiling beams in the 920MHz band is presented. In first step of our investigation, we conduct simulations using the FDTD (Finite Difference Time Domain) method and propagation tests close to a beam on the ceiling of a concrete building. In the second step, we derive a path loss prediction formula from the simulation results by using the FDTD method, by dividing into three regions of LoS (line-of-sight) situation, situation in the vicinity of the beam, and NLoS (non-line-of-sight) situation, depending on the positional relationship between the beam and transmitter (Tx) and receiver (Rx) antennas. For each condition, the prediction formula is expressed by a relatively simple form as a function of height of the antennas with respect to the beam bottom. Thus, the prediction formula is very useful for the wireless site planning for the IoT wireless devices set close to concrete beam ceiling.

  • SDNRCFII: An SDN-Based Reliable Communication Framework for Industrial Internet

    Hequn LI  Die LIU  Jiaxi LU  Hai ZHAO  Jiuqiang XU  

     
    PAPER-Network

      Pubricized:
    2022/05/26
      Vol:
    E105-B No:12
      Page(s):
    1508-1518

    Industrial networks need to provide reliable communication services, usually in a redundant transmission (RT) manner. In the past few years, several device-redundancy-based, layer 2 solutions have been proposed. However, with the evolution of industrial networks to the Industrial Internet, these methods can no longer work properly in the non-redundancy, layer 3 environments. In this paper, an SDN-based reliable communication framework is proposed for the Industrial Internet. It can provide reliable communication guarantees for mission-critical applications while servicing non-critical applications in a best-effort transmission manner. Specifically, it first implements an RT-based reliable communication method using the Industrial Internet's link-redundancy feature. Next, it presents a redundant synchronization mechanism to prevent end systems from receiving duplicate data. Finally, to maximize the number of critical flows in it (an NP-hard problem), two ILP-based routing & scheduling algorithms are also put forward. These two algorithms are optimal (Scheduling with Unconstrained Routing, SUR) and suboptimal (Scheduling with Minimum length Routing, SMR). Numerous simulations are conducted to evaluate its effectiveness. The results show that it can provide reliable, duplicate-free services to end systems. Its reliable communication method performs better than the conventional best-effort transmission method in terms of packet delivery success ratio in layer 3 networks. In addition, its scheduling algorithm, SMR, performs well on the experimental topologies (with average quality of 93% when compared to SUR), and the time overhead is acceptable.

61-80hit(1942hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.