Keyword Search Result

[Keyword] RED(1942hit)

161-180hit(1942hit)

  • Experimental Validation of Link Quality Prediction Using Exact Self-Status of Mobility Robots in Wireless LAN Systems Open Access

    Riichi KUDO  Matthew COCHRANE  Kahoko TAKAHASHI  Takeru INOUE  Kohei MIZUNO  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1385-1393

    Autonomous mobility machines, such as self-driving cars, transportation robots, and automated construction machines, are promising to support or enrich human lives. To further improve such machines, they will be connected to the network via wireless links to be managed, monitored, or remotely operated. The autonomous mobility machines must have self-status based on their positioning system to safely conduct their operations without colliding with other objects. The self-status is not only essential for machine operation but also it is valuable for wireless link quality management. This paper presents self-status-based wireless link quality prediction and evaluates its performance by using a prototype mobility robot combined with a wireless LAN system. The developed robot has functions to measure the throughput and receive signal strength indication and obtain self-status details such as location, direction, and odometry data. Prediction performance is evaluated in offline processing by using the dataset gathered in an indoor experiment. The experiments clarified that, in the 5.6 GHz band, link quality prediction using self-status of the robot forecasted the throughput several seconds into the future, and the prediction accuracies were investigated as dependent on time window size of the target throughput, bandwidth, and frequency gap.

  • Evaluation Method of Voltage and Current Distributions on Asymmetrical and Equi-Length Differential-Paired Lines

    Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER

      Pubricized:
    2020/05/27
      Vol:
    E103-C No:11
      Page(s):
    597-604

    For actual multi-channel differential signaling system, the ideal balance or symmetrical topology cannot be established, and hence, an imbalance component is excited. However a theoretical analysis method of evaluating the voltage and current distribution on the differential-paired lines, which allows to anticipate EM radiation at the design stage and to study possible means for suppressing imbalance components, has not been implemented. To provide the basic considerations for electromagnetic (EM) radiation from practical asymmetrical differential-paired lines structure with equi-length routing used in high-speed board design, this paper newly proposes an analytical method for evaluating the voltage and current at any point on differential-paired lines by expressing the differential paired-lines with an equivalent source circuit and an equivalent load circuit. The proposed method can predict S-parameters, distributions of voltage and current and EM radiation with sufficient accuracy. In addition, the proposed method provides enough flexibility for different geometric parameters and can be used to develop physical insights and design guidelines. This study has successfully established a basic method to effectively predict signal integrity and EM interference issues on a differential-paired lines.

  • Generation of Checkered Pattern Images by Iterative Calculation Using Prewitt Filter with Expanded Window Size

    Toru HIRAOKA  

     
    LETTER-Computer Graphics

      Pubricized:
    2020/07/31
      Vol:
    E103-D No:11
      Page(s):
    2407-2410

    We propose a nonphotorealistic rendering method for generating checkered pattern images from photographic images. The proposed method is executed by iterative calculation using a Prewitt filter with an expanded window size and can automatically generate checkered patterns according to changes in edges and shade of photographic images. To verify the effectiveness of the proposed method, an experiment was conducted using various photographic images. An additional experiment was conducted to visually confirm the checkered pattern images generated by changing the iteration number, window size, and parameter to emphasize the checkered patterns.

  • Job-Aware File-Storage Optimization for Improved Hadoop I/O Performance

    Makoto NAKAGAMI  Jose A.B. FORTES  Saneyasu YAMAGUCHI  

     
    PAPER-Software System

      Pubricized:
    2020/06/30
      Vol:
    E103-D No:10
      Page(s):
    2083-2093

    Hadoop is a popular data-analytics platform based on Google's MapReduce programming model. Hard-disk drives (HDDs) are generally used in big-data analysis, and the effectiveness of the Hadoop platform can be optimized by enhancing its I/O performance. HDD performance varies depending on whether the data are stored in the inner or outer disk zones. This paper proposes a method that utilizes the knowledge of job characteristics to realize efficient data storage in HDDs, which in turn, helps improve Hadoop performance. Per the proposed method, job files that need to be frequently accessed are stored in outer disk tracks which are capable of facilitating sequential-access speeds that are higher than those provided by inner tracks. Thus, the proposed method stores temporary and permanent files in the outer and inner zones, respectively, thereby facilitating fast access to frequently required data. Results of performance evaluation demonstrate that the proposed method improves Hadoop performance by 15.4% when compared to normal cases when file placement is not used. Additionally, the proposed method outperforms a previously proposed placement approach by 11.1%.

  • Single Stage Vehicle Logo Detector Based on Multi-Scale Prediction

    Junxing ZHANG  Shuo YANG  Chunjuan BO  Huimin LU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/07/14
      Vol:
    E103-D No:10
      Page(s):
    2188-2198

    Vehicle logo detection technology is one of the research directions in the application of intelligent transportation systems. It is an important extension of detection technology based on license plates and motorcycle types. A vehicle logo is characterized by uniqueness, conspicuousness, and diversity. Therefore, thorough research is important in theory and application. Although there are some related works for object detection, most of them cannot achieve real-time detection for different scenes. Meanwhile, some real-time detection methods of single-stage have performed poorly in the object detection of small sizes. In order to solve the problem that the training samples are scarce, our work in this paper is improved by constructing the data of a vehicle logo (VLD-45-S), multi-stage pre-training, multi-scale prediction, feature fusion between deeper with shallow layer, dimension clustering of the bounding box, and multi-scale detection training. On the basis of keeping speed, this article improves the detection precision of the vehicle logo. The generalization of the detection model and anti-interference capability in real scenes are optimized by data enrichment. Experimental results show that the accuracy and speed of the detection algorithm are improved for the object of small sizes.

  • On Dimensionally Orthogonal Diagonal Hypercubes Open Access

    Xiao-Nan LU  Tomoko ADACHI  

     
    PAPER-combinatorics

      Vol:
    E103-A No:10
      Page(s):
    1211-1217

    In this paper, we propose a notion for high-dimensional generalizations of mutually orthogonal Latin squares (MOLS) and mutually orthogonal diagonal Latin squares (MODLS), called mutually dimensionally orthogonal d-cubes (MOC) and mutually dimensionally orthogonal diagonal d-cubes (MODC). Systematic constructions for MOC and MODC by using polynomials over finite fields are investigated. In particular, for 3-dimensional cubes, the results for the maximum possible number of MODC are improved by adopting the proposed construction.

  • Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning

    Danlei XING  Fei WU  Ying SUN  Xiao-Yuan JING  

     
    LETTER-Software Engineering

      Pubricized:
    2020/07/07
      Vol:
    E103-D No:10
      Page(s):
    2237-2240

    Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a fully-connected neural network to mine potential similarities of source and target data. Next, we reduce the differences of both marginal distributions and conditional distributions between mapped source and target data. We also introduce the discriminative feature learning to make full use of label information, which is that the instances from the same class are close to each other and the instances from different classes are distant from each other. Extensive experiments are conducted on 10 projects from AEEEM and NASA datasets, and the experimental results indicate that our approach obtains better prediction performance than baselines.

  • Which Metric Is Suitable for Evaluating Your Multi-Threading Processors? In Terms of Throughput, Fairness, and Predictability

    Xin JIN  Ningmei YU  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E103-A No:9
      Page(s):
    1127-1132

    Simultaneous multithreading technology (SMT) can effectively improve the overall throughput and fairness through improving the resources usage efficiency of processors. Traditional works have proposed some metrics for evaluation in real systems, each of which strikes a trade-off between fairness and throughput. How to choose an appropriate metric to meet the demand is still controversial. Therefore, we put forward suggestions on how to select the appropriate metrics through analyzing and comparing the characteristics of each metric. In addition, for the new application scenario of cloud computing, the data centers have high demand for the quality of service for killer applications, which bring new challenges to SMT in terms of performance guarantees. Therefore, we propose a new metric P-slowdown to evaluate the quality of performance guarantees. Based on experimental data, we show the feasibility of P-slowdown on performance evaluation. We also demonstrate the benefit of P-slowdown through two use cases, in which we not only improve the performance guarantee level of SMT processors through the cooperation of P-slowdown and resources allocation strategy, but also use P-slowdown to predict the occurrence of abnormal behavior against security attacks.

  • Selective Pseudo-Labeling Based Subspace Learning for Cross-Project Defect Prediction

    Ying SUN  Xiao-Yuan JING  Fei WU  Yanfei SUN  

     
    LETTER-Software Engineering

      Pubricized:
    2020/06/10
      Vol:
    E103-D No:9
      Page(s):
    2003-2006

    Cross-project defect prediction (CPDP) is a research hot recently, which utilizes the data form existing source project to construct prediction model and predicts the defect-prone of software instances from target project. However, it is challenging in bridging the distribution difference between different projects. To minimize the data distribution differences between different projects and predict unlabeled target instances, we present a novel approach called selective pseudo-labeling based subspace learning (SPSL). SPSL learns a common subspace by using both labeled source instances and pseudo-labeled target instances. The accuracy of pseudo-labeling is promoted by iterative selective pseudo-labeling strategy. The pseudo-labeled instances from target project are iteratively updated by selecting the instances with high confidence from two pseudo-labeling technologies. Experiments are conducted on AEEEM dataset and the results show that SPSL is effective for CPDP.

  • Chaos-Chaos Intermittency Synchronization Induced by Feedback Signals and Stochastic Noise in Coupled Chaotic Systems Open Access

    Sou NOBUKAWA  Nobuhiko WAGATSUMA  Haruhiko NISHIMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E103-A No:9
      Page(s):
    1086-1094

    Various types of synchronization phenomena have been reported in coupled chaotic systems. In recent years, the applications of these phenomena have been advancing for utilization in sensor network systems, secure communication systems, and biomedical systems. Specifically, chaos-chaos intermittency (CCI) synchronization is a characterized synchronization phenomenon. Previously, we proposed a new chaos control method, termed as the “reduced region of orbit (RRO) method,” to achieve CCI synchronization using external feedback signals. This method has been gathering research attention because of its ability to induce CCI synchronization; this can be achieved even if internal system parameters cannot be adjusted by external factors. Further, additive stochastic noise is known to have a similar effect. The objective of this study was to compare the performance of the RRO method and the method that applies stochastic noise, both of which are capable of inducing CCI synchronization. The results showed that even though CCI synchronization can be realized using both control methods under the induced attractor merging condition, the RRO method possesses higher adoptability and accomplishes a higher degree of CCI synchronization compared to additive stochastic noise. This advantage might facilitate the application of synchronization in coupled chaotic systems.

  • Complexity-Reduced Adaptive PAPR Reduction Method Using Null Space in MIMO Channel for MIMO-OFDM Signals Open Access

    Taku SUZUKI  Mikihito SUZUKI  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/23
      Vol:
    E103-B No:9
      Page(s):
    1019-1029

    This paper proposes a computational complexity-reduced algorithm for an adaptive peak-to-average power ratio (PAPR) reduction method previously developed by members of our research group that uses the null space in a multiple-input multiple-output (MIMO) channel for MIMO-orthogonal frequency division multiplexing (OFDM) signals. The proposed algorithm is an extension of the peak cancellation (PC) signal-based method that has been mainly investigated for per-antenna PAPR reduction. This method adds the PC signal, which is designed so that the out-of-band radiation is removed/reduced, directly to the time-domain transmission signal at each antenna. The proposed method, referred to as PCCNC (PC with channel-null constraint), performs vector-level signal processing in the PC signal generation so that the PC signal is transmitted only to the null space in the MIMO channel. We investigate three methods to control the beamforming (BF) vector in the PC signal, which is a key factor in determining the achievable PAPR performance of the algorithm. Computer simulation results show that the proposed PCCNC achieves approximately the same throughput-vs.-PAPR performance as the previous method while dramatically reducing the required computational cost.

  • Time Allocation in Ambient Backscatter Assisted RF-Powered Cognitive Radio Network with Friendly Jamming against Eavesdropping

    Ronghua LUO  Chen LIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/03
      Vol:
    E103-B No:9
      Page(s):
    1011-1018

    In this paper, we study a radio frequency (RF)-powered backscatter assisted cognitive radio network (CRN), where an eavesdropper exists. This network includes a primary transmitter, a pair of secondary transmitter and receiver, a friendly jammer and an eavesdropper. We assume that the secondary transmitter works in ambient backscatter (AmBack) mode and the friendly jammer works in harvest-then-transmit (HTT) mode, where the primary transmitter serves as energy source. To enhance the physical layer security of the secondary user, the friendly jammer uses its harvested energy from the primary transmitter to transmit jamming noise to the eavesdropper. Furthermore, for maximizing the secrecy rate of secondary user, the optimal time allocation including the energy harvesting and jamming noise transmission phases is obtained. Simulation results verify the superiority of the proposed scheme.

  • Link Prediction Using Higher-Order Feature Combinations across Objects

    Kyohei ATARASHI  Satoshi OYAMA  Masahito KURIHARA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/05/14
      Vol:
    E103-D No:8
      Page(s):
    1833-1842

    Link prediction, the computational problem of determining whether there is a link between two objects, is important in machine learning and data mining. Feature-based link prediction, in which the feature vectors of the two objects are given, is of particular interest because it can also be used for various identification-related problems. Although the factorization machine and the higher-order factorization machine (HOFM) are widely used for feature-based link prediction, they use feature combinations not only across the two objects but also from the same object. Feature combinations from the same object are irrelevant to major link prediction problems such as predicting identity because using them increases computational cost and degrades accuracy. In this paper, we present novel models that use higher-order feature combinations only across the two objects. Since there were no algorithms for efficiently computing higher-order feature combinations only across two objects, we derive one by leveraging reported and newly obtained results of calculating the ANOVA kernel. We present an efficient coordinate descent algorithm for proposed models. We also improve the effectiveness of the existing one for the HOFM. Furthermore, we extend proposed models to a deep neural network. Experimental results demonstrated the effectiveness of our proposed models.

  • Control Vector Selection for Extended Packetized Predictive Control in Wireless Networked Control Systems

    Keisuke NAKASHIMA  Takahiro MATSUDA  Masaaki NAGAHARA  Tetsuya TAKINE  

     
    PAPER-Network

      Pubricized:
    2020/01/15
      Vol:
    E103-B No:7
      Page(s):
    748-758

    We study wireless networked control systems (WNCSs), where controllers (CLs), controlled objects (COs), and other devices are connected through wireless networks. In WNCSs, COs can become unstable due to bursty packet losses and random delays on wireless networks. To reduce these network-induced effects, we utilize the packetized predictive control (PPC) method, where future control vectors to compensate bursty packet losses are generated in the receiving horizon manner, and they are packed into packets and transferred to a CO unit. In this paper, we extend the PPC method so as to compensate random delays as well as bursty packet losses. In the extended PPC method, generating many control vectors improves the robustness against both problems while it increases traffic on wireless networks. Therefore, we consider control vector selection to improve the robustness effectively under the constraint of single packet transmission. We first reconsider the input strategy of control vectors received by COs and propose a control vector selection scheme suitable for the strategy. In our selection scheme, control vectors are selected based on the estimated average and variance of round-trip delays. Moreover, we solve the problem that the CL may misconceive the CO's state due to insufficient information for state estimation. Simulation results show that our selection scheme achieves the higher robustness against both bursty packet losses and delays in terms of the 2-norm of the CO's state.

  • Clustering for Interference Alignment with Cache-Enabled Base Stations under Limited Backhaul Links

    Junyao RAN  Youhua FU  Hairong WANG  Chen LIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/12/25
      Vol:
    E103-B No:7
      Page(s):
    796-803

    We propose to use clustered interference alignment for the situation where the backhaul link capacity is limited and the base station is cache-enabled given MIMO interference channels, when the number of Tx-Rx pairs exceeds the feasibility constraint of interference alignment. We optimize clustering with the soft cluster size constraint algorithm by adding a cluster size balancing process. In addition, the CSI overhead is quantified as a system performance indicator along with the average throughput. Simulation results show that cluster size balancing algorithm generates clusters that are more balanced as well as attaining higher long-term throughput than the soft cluster size constraint algorithm. The long-term throughput is further improved under high SNR by reallocating the capacity of the backhaul links based on the clustering results.

  • A Flexible Overloaded MIMO Receiver with Adaptive Selection of Extended Rotation Matrices

    Satoshi DENNO  Akihiro KITAMOTO  Ryosuke SAWADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/01/17
      Vol:
    E103-B No:7
      Page(s):
    787-795

    This paper proposes a novel flexible receiver with virtual channels for overloaded multiple-input multiple-output (MIMO) channels. The receiver applies extended rotation matrices proposed in the paper for the flexibility. In addition, adaptive selection of the extended rotation matrices is proposed for further performance improvement. We propose two techniques to reduce the computational complexity of the adaptive selection. As a result, the proposed receiver gives us an option to reduce the complexity with a slight decrease in the transmission performance by changing receiver configuration parameters. A computer simulation reveals that the adaptive selection attains a gain of about 3dB at the BER of 10-3.

  • Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption

    Pratish DATTA  Tatsuaki OKAMOTO  Katsuyuki TAKASHIMA  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2020/04/13
      Vol:
    E103-D No:7
      Page(s):
    1556-1597

    This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP's as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.

  • Evaluation of Software Fault Prediction Models Considering Faultless Cases

    Yukasa MURAKAMI  Masateru TSUNODA  Koji TODA  

     
    PAPER

      Pubricized:
    2020/03/09
      Vol:
    E103-D No:6
      Page(s):
    1319-1327

    To enhance the prediction accuracy of the number of faults, many studies proposed various prediction models. The model is built using a dataset collected in past projects, and the number of faults is predicted using the model and the data of the current project. Datasets sometimes have many data points where the dependent variable, i.e., the number of faults is zero. When a multiple linear regression model is made using the dataset, the model may not be built properly. To avoid the problem, the Tobit model is considered to be effective when predicting software faults. The model assumes that the range of a dependent variable is limited and the model is built based on the assumption. Similar to the Tobit model, the Poisson regression model assumes there are many data points whose value is zero on the dependent variable. Also, log-transformation is sometimes applied to enhance the accuracy of the model. Additionally, ensemble methods are effective to enhance prediction accuracy of the models. We evaluated the prediction accuracy of the methods separately, when the number of faults is zero and not zero. In the experiment, our proposed ensemble method showed the highest accuracy, and Pred25 was 21% when the number of faults was not zero, and it was 45% when the number was zero.

  • Privacy-Aware Best-Balanced Multilingual Communication

    Mondheera PITUXCOOSUVARN  Takao NAKAGUCHI  Donghui LIN  Toru ISHIDA  

     
    PAPER

      Pubricized:
    2020/03/18
      Vol:
    E103-D No:6
      Page(s):
    1288-1296

    In machine translation (MT) mediated human-to-human communication, it is not an easy task to select the languages and translation services to be used as the users have various language backgrounds and skills. Our previous work introduced the best-balanced machine translation mechanism (BBMT) to automatically select the languages and translation services so as to equalize the language barriers of participants and to guarantee their equal opportunities in joining conversations. To assign proper languages to be used, however, the mechanism needs information of the participants' language skills, typically participants' language test scores. Since it is important to keep test score confidential, as well as other sensitive information, this paper introduces agents, which exchange encrypted information, and secure computation to ensure that agents can select the languages and translation services without destroying privacy. Our contribution is to introduce a multi-agent system with secure computation that can protect the privacy of users in multilingual communication. To our best knowledge, it is the first attempt to introduce multi-agent systems and secure computing to this area. The key idea is to model interactions among agents who deal with user's sensitive data, and to distribute calculation tasks to three different types of agents, together with data encryption, so no agent is able to access or recover participants' score.

  • Supporting Predictable Performance Guarantees for SMT Processors

    Xin JIN  Ningmei YU  Yaoyang ZHOU  Bowen HUANG  Zihao YU  Xusheng ZHAN  Huizhe WANG  Sa WANG  Yungang BAO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E103-A No:6
      Page(s):
    806-820

    Simultaneous multithreading (SMT) technology improves CPU throughput, but also causes unpredictable performance fluctuations for co-running workloads. Although recent major SMT processors have adopted some techniques to promote hardware support for quality-of-service (QoS), achieving both precise performance guarantees and high throughput on SMT architectures is still a challenging open problem. In this paper, we demonstrate through some comprehensive investigations on a cycle-accurate simulator that not only almost all in-core resources suffer from severe contention as workloads vary but also there is a non-linear relationship between performance and available quotas of resources. We consider these observations as the fundamental reason leading to the challenging problem above. Thus, we introduce QoSMT, a novel hardware scheme that leverages a closed-loop controlling mechanism consisting of detection, prediction and adjustment to enforce precise performance guarantees for specific targets, e.g. achieving 85%, 90% or 95% of the performance of a workload running alone respectively. We implement a prototype on GEM5 simulator. Experimental results show that the average control error is only 1.4%, 0.5% and 3.6%.

161-180hit(1942hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.