Keyword Search Result

[Keyword] RED(1942hit)

101-120hit(1942hit)

  • Online EEG-Based Emotion Prediction and Music Generation for Inducing Affective States

    Kana MIYAMOTO  Hiroki TANAKA  Satoshi NAKAMURA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2022/02/15
      Vol:
    E105-D No:5
      Page(s):
    1050-1063

    Music is often used for emotion induction because it can change the emotions of people. However, since we subjectively feel different emotions when listening to music, we propose an emotion induction system that generates music that is adapted to each individual. Our system automatically generates suitable music for emotion induction based on the emotions predicted from an electroencephalogram (EEG). We examined three elements for constructing our system: 1) a music generator that creates music that induces emotions that resemble the inputs, 2) emotion prediction using EEG in real-time, and 3) the control of a music generator using the predicted emotions for making music that is suitable for inducing emotions. We constructed our proposed system using these elements and evaluated it. The results showed its effectiveness for inducing emotions and suggest that feedback loops that tailor stimuli to individuals can successfully induce emotions.

  • Predicting A Growing Stage of Rice Plants Based on The Cropping Records over 25 Years — A Trial of Feature Engineering Incorporating Hidden Regional Characteristics —

    Hiroshi UEHARA  Yasuhiro IUCHI  Yusuke FUKAZAWA  Yoshihiro KANETA  

     
    PAPER

      Pubricized:
    2021/12/29
      Vol:
    E105-D No:5
      Page(s):
    955-963

    This study tries to predict date of ear emergence of rice plants, based on cropping records over 25 years. Predicting ear emergence of rice plants is known to be crucial for practicing good harvesting quality, and has long been dependent upon old farmers who acquire skills of intuitive prediction based on their long term experiences. Facing with aging farmers, data driven approach for the prediction have been pursued. Nevertheless, they are not necessarily sufficient in terms of practical use. One of the issue is to adopt weather forecast as the feature so that the predictive performance is varied by the accuracy of the forecast. The other issue is that the performance is varied by region and the regional characteristics have not been used as the features for the prediction. With this background, we propose a feature engineering to quantify hidden regional characteristics as the feature for the prediction. Further the feature is engineered based only on observational data without any forecast. Applying our proposal to the data on the cropping records resulted in sufficient predictive performance, ±2.69days of RMSE.

  • LMI-Based Design of Output Feedback Controllers with Decentralized Event-Triggering

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2021/09/15
      Vol:
    E105-A No:5
      Page(s):
    816-822

    In this paper, event-triggered control over a sensor network is studied as one of the control methods of cyber-physical systems. Event-triggered control is a method that communications occur only when the measured value is widely changed. In the proposed method, by solving an LMI (Linear Matrix Inequality) feasibility problem, an event-triggered output feedback controller such that the closed-loop system is asymptotically stable is derived. First, the problem formulation is given. Next, the control problem is reduced to an LMI feasibility problem. Finally, the proposed method is demonstrated by a numerical example.

  • SDM4IIoT: An SDN-Based Multicast Algorithm for Industrial Internet of Things

    Hequn LI  Jiaxi LU  Jinfa WANG  Hai ZHAO  Jiuqiang XU  Xingchi CHEN  

     
    PAPER-Network

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    545-556

    Real-time and scalable multicast services are of paramount importance to Industrial Internet of Things (IIoT) applications. To realize these services, the multicast algorithm should, on the one hand, ensure the maximum delay of a multicast session not exceeding its upper delay bound. On the other hand, the algorithm should minimize session costs. As an emerging networking paradigm, Software-defined Networking (SDN) can provide a global view of the network to multicast algorithms, thereby bringing new opportunities for realizing the desired multicast services in IIoT environments. Unfortunately, existing SDN-based multicast (SDM) algorithms cannot meet the real-time and scalable requirements simultaneously. Therefore, in this paper, we focus on SDM algorithm design for IIoT environments. To be specific, the paper first converts the multicast tree construction problem for SDM in IIoT environments into a delay-bounded least-cost shared tree problem and proves that it is an NP-complete problem. Then, the paper puts forward a shared tree (ST) algorithm called SDM4IIoT to compute suboptimal solutions to the problem. The algorithm consists of five steps: 1) construct a delay-optimal shared tree; 2) divide the tree into a set of subpaths and a subtree; 3) optimize the cost of each subpath by relaxing the delay constraint; 4) optimize the subtree cost in the same manner; 5) recombine them into a shared tree. Simulation results show that the algorithm can provide real-time support that other ST algorithms cannot. In addition, it can achieve good scalability. Its cost is only 20.56% higher than the cost-optimal ST algorithm. Furthermore, its computation time is also acceptable. The algorithm can help to realize real-time and scalable multicast services for IIoT applications.

  • Experiment of Integrated Technologies in Robotics, Network, and Computing for Smart Agriculture Open Access

    Ryota ISHIBASHI  Takuma TSUBAKI  Shingo OKADA  Hiroshi YAMAMOTO  Takeshi KUWAHARA  Kenichi KAWAMURA  Keisuke WAKAO  Takatsune MORIYAMA  Ricardo OSPINA  Hiroshi OKAMOTO  Noboru NOGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:4
      Page(s):
    364-378

    To sustain and expand the agricultural economy even as its workforce shrinks, the efficiency of farm operations must be improved. One key to efficiency improvement is completely unmanned driving of farm machines, which requires stable monitoring and control of machines from remote sites, a safety system to ensure safe autonomous driving even without manual operations, and precise positioning in not only small farm fields but also wider areas. As possible solutions for those issues, we have developed technologies of wireless network quality prediction, an end-to-end overlay network, machine vision for safety and positioning, network cooperated vehicle control and autonomous tractor control and conducted experiments in actual field environments. Experimental results show that: 1) remote monitoring and control can be seamlessly continued even when connection between the tractor and the remote site needs to be switched across different wireless networks during autonomous driving; 2) the safety of the autonomous driving can automatically be ensured by detecting both the existence of people in front of the unmanned tractor and disturbance of network quality affecting remote monitoring operation; and 3) the unmanned tractor can continue precise autonomous driving even when precise positioning by satellite systems cannot be performed.

  • Dynamic Service Chain Construction Based on Model Predictive Control in NFV Environments

    Masaya KUMAZAKI  Masaki OGURA  Takuji TACHIBANA  

     
    PAPER-Network Virtualization

      Pubricized:
    2021/10/15
      Vol:
    E105-B No:4
      Page(s):
    399-410

    For beyond 5G era, in network function virtualization (NFV) environments, service chaining can be utilized to provide the flexible network infrastructures needed to support the creation of various application services. In this paper, we propose a dynamic service chain construction based on model predictive control (MPC) to utilize network resources. In the proposed method, the number of data packets in the buffer at each node is modeled as a dynamical system for MPC. Then, we formulate an optimization problem with the predicted amount of traffic injecting into each service chain from users for the dynamical system. In the optimization problem, the transmission route of each service chain, the node where each VNF is placed, and the amount of resources for each VNF are determined simultaneously by using MPC so that the amount of resources allocated to VNFs and the number of VNF migrations are minimized. In addition, the performance of data transmission is also controlled by considering the maximum amount of data packets stored in buffers. The performance of the proposed method is evaluated by simulation, and the effectiveness of the proposed method with different parameter values is investigated.

  • Anomaly Prediction for Wind Turbines Using an Autoencoder with Vibration Data Supported by Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroki HAYASHI  Toru SUZUKI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    732-735

    The prediction of the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation industry. Studies have been conducted on machine learning methods that use condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques that use unsupervised learning where the anomaly pattern is unknown have attracted significant interest in the area of anomaly detection and prediction. In particular, vibration data are considered useful because they include the changes that occur in the early stages of a malfunction. However, when autoencoder-based techniques are applied for prediction purposes, in the training process it is difficult to distinguish the difference between operating and non-operating condition data, which leads to the degradation of the prediction performance. In this letter, we propose a method in which both vibration data and SCADA data are utilized to improve the prediction performance, namely, a method that uses a power curve composed of active power and wind speed. We evaluated the method's performance using vibration and SCADA data obtained from an actual wind farm.

  • Link Availability Prediction Based on Machine Learning for Opportunistic Networks in Oceans

    Lige GE  Shengming JIANG  Xiaowei WANG  Yanli XU  Ruoyu FENG  Zhichao ZHENG  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2021/08/24
      Vol:
    E105-A No:3
      Page(s):
    598-602

    Along with the fast development of blue economy, wireless communication in oceans has received extensive attention in recent years, and opportunistic networks without any aid from fixed infrastructure or centralized management are expected to play an important role in such highly dynamic environments. Here, link prediction can help nodes to select proper links for data forwarding to reduce transmission failure. The existing prediction schemes are mainly based on analytical models with no adaptability, and consider relatively simple and small terrestrial wireless networks. In this paper, we propose a new link prediction algorithm based on machine learning, which is composed of an extractor of convolutional layers and an estimator of long short-term memory to extract useful representations of time-series data and identify effective long-term dependencies. The experiments manifest that the proposed scheme is more effective and flexible compared with the other link prediction schemes.

  • Reduction of LSI Maximum Power Consumption with Standard Cell Library of Stack Structured Cells

    Yuki IMAI  Shinichi NISHIZAWA  Kazuhito ITO  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-A No:3
      Page(s):
    487-496

    Environmental power generation devices such as solar cells are used as power sources for IoT devices. Due to the large internal resistance of such power source, LSIs in the IoT devices may malfunction when the LSI operates at high speed, a large current flows, and the voltage drops. In this paper, a standard cell library of stacked structured cells is proposed to increase the delay of logic circuits within the range not exceeding the clock cycle, thereby reducing the maximum current of the LSIs. We show that the maximum power consumption of LSIs can be reduced without increasing the energy consumption of the LSIs.

  • Register Minimization and its Application in Schedule Exploration for Area Minimization for Double Modular Redundancy LSI Design

    Yuya KITAZAWA  Kazuhito ITO  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-A No:3
      Page(s):
    530-539

    Double modular redundancy (DMR) is to execute an operation twice and detect a soft error by comparing the duplicated operation results. The soft error is corrected by re-executing necessary operations. The re-execution requires error-free input data and registers are needed to store such necessary error-free data. In this paper, a method to minimize the required number of registers is proposed where an appropriate subgraph partitioning of operation nodes are searched. In addition, using the proposed register minimization method, a minimization of the area of functional units and registers required to implement the DMR design is proposed.

  • Bicolored Path Embedding Problems Inspired by Protein Folding Models

    Tianfeng FENG  Ryuhei UEHARA  Giovanni VIGLIETTA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    623-633

    In this paper, we introduce a path embedding problem inspired by the well-known hydrophobic-polar (HP) model of protein folding. A graph is said bicolored if each vertex is assigned a label in the set {red, blue}. For a given bicolored path P and a given bicolored graph G, our problem asks whether we can embed P into G in such a way as to match the colors of the vertices. In our model, G represents a protein's “blueprint,” and P is an amino acid sequence that has to be folded to form (part of) G. We first show that the bicolored path embedding problem is NP-complete even if G is a rectangular grid (a typical scenario in protein folding models) and P and G have the same number of vertices. By contrast, we prove that the problem becomes tractable if the height of the rectangular grid G is constant, even if the length of P is independent of G. Our proof is constructive: we give a polynomial-time algorithm that computes an embedding (or reports that no embedding exists), which implies that the problem is in XP when parameterized according to the height of G. Additionally, we show that the problem of embedding P into a rectangular grid G in such a way as to maximize the number of red-red contacts is NP-hard. (This problem is directly inspired by the HP model of protein folding; it was previously known to be NP-hard if G is not given, and P can be embedded in any way on a grid.) Finally, we show that, given a bicolored graph G, the problem of constructing a path P that embeds in G maximizing red-red contacts is Poly-APX-hard.

  • A Novel Method for Adaptive Beamforming under the Strong Interference Condition

    Zongli RUAN  Hongshu LIAO  Guobing QIAN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/08/02
      Vol:
    E105-A No:2
      Page(s):
    109-113

    In this letter, firstly, a novel adaptive beamformer using independent component analysis (ICA) algorithm is proposed. By this algorithm, the ambiguity of amplitude and phase resulted from blind source separation is removed utilizing the special structure of array manifolds matrix. However, there might exist great calibration error when the powers of interferences are far larger than that of desired signal at many applications such as sonar, radio astronomy, biomedical engineering and earthquake detection. As a result, this will lead to a significant reduction in separation performance. Then, a new method based on the combination of ICA and primary component analysis (PCA) is proposed to recover the desired signal's amplitude under strong interference. Finally, computer simulation is carried out to indicate the effectiveness of our methods. The simulation results show that the proposed methods can obtain higher SNR and more accurate power estimation of desired signal than diagonal loading sample matrix inversion (LSMI) and worst-case performance optimization (WCPO) method.

  • Joint Domain Adaption and Pseudo-Labeling for Cross-Project Defect Prediction

    Fei WU  Xinhao ZHENG  Ying SUN  Yang GAO  Xiao-Yuan JING  

     
    LETTER-Software Engineering

      Pubricized:
    2021/11/04
      Vol:
    E105-D No:2
      Page(s):
    432-435

    Cross-project defect prediction (CPDP) is a hot research topic in recent years. The inconsistent data distribution between source and target projects and lack of labels for most of target instances bring a challenge for defect prediction. Researchers have developed several CPDP methods. However, the prediction performance still needs to be improved. In this paper, we propose a novel approach called Joint Domain Adaption and Pseudo-Labeling (JDAPL). The network architecture consists of a feature mapping sub-network to map source and target instances into a common subspace, followed by a classification sub-network and an auxiliary classification sub-network. The classification sub-network makes use of the label information of labeled instances to generate pseudo-labels. The auxiliary classification sub-network learns to reduce the distribution difference and improve the accuracy of pseudo-labels for unlabeled instances through loss maximization. Network training is guided by the adversarial scheme. Extensive experiments are conducted on 10 projects of the AEEEM and NASA datasets, and the results indicate that our approach achieves better performance compared with the baselines.

  • A Robust Canonical Polyadic Tensor Decomposition via Structured Low-Rank Matrix Approximation

    Riku AKEMA  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/06/23
      Vol:
    E105-A No:1
      Page(s):
    11-24

    The Canonical Polyadic Decomposition (CPD) is the tensor analog of the Singular Value Decomposition (SVD) for a matrix and has many data science applications including signal processing and machine learning. For the CPD, the Alternating Least Squares (ALS) algorithm has been used extensively. Although the ALS algorithm is simple, it is sensitive to a noise of a data tensor in the applications. In this paper, we propose a novel strategy to realize the noise suppression for the CPD. The proposed strategy is decomposed into two steps: (Step 1) denoising the given tensor and (Step 2) solving the exact CPD of the denoised tensor. Step 1 can be realized by solving a structured low-rank approximation with the Douglas-Rachford splitting algorithm and then Step 2 can be realized by solving the simultaneous diagonalization of a matrix tuple constructed by the denoised tensor with the DODO method. Numerical experiments show that the proposed algorithm works well even in typical cases where the ALS algorithm suffers from the so-called bottleneck/swamp effect.

  • Backward-Compatible Forward Error Correction of Burst Errors and Erasures for 10BASE-T1S Open Access

    Gergely HUSZAK  Hiroyoshi MORITA  George ZIMMERMAN  

     
    PAPER-Network

      Pubricized:
    2021/06/23
      Vol:
    E104-B No:12
      Page(s):
    1524-1538

    IEEE P802.3cg established a new pair of Ethernet physical layer devices (PHY), one of which, the short-reach 10BASE-T1S, uses 4B/5B mapping over Differential Manchester Encoding to maintain a data rate of 10 Mb/s at MAC/PLS interface, while providing in-band signaling between transmitter and receivers. However, 10BASE-T1S does not have any error correcting capability built into it. As a response to emerging building, industrial, and transportation requirements, this paper outlines research that leads to the possibility of establishing low-complexity, backward-compatible Forward Error Correction with per-frame configurable guaranteed burst error and erasure correcting capabilities over any 10BASE-T1S Ethernet network segment. The proposed technique combines a specialized, systematic Reed-Solomon code and a novel, three-tier, technique to avoid the appearance of certain inadmissible codeword symbols at the output of the encoder. In this way, the proposed technique enables error and erasure correction, while maintaining backwards compatibility with the current version of the standard.

  • A Failsoft Scheme for Mobile Live Streaming by Scalable Video Coding

    Hiroki OKADA  Masato YOSHIMI  Celimuge WU  Tsutomu YOSHINAGA  

     
    PAPER

      Pubricized:
    2021/09/08
      Vol:
    E104-D No:12
      Page(s):
    2121-2130

    In this study, we propose a mechanism called adaptive failsoft control to address peak traffic in mobile live streaming, using a chasing playback function. Although a cache system is avaliable to support the chasing playback function for live streaming in a base station and device-to-device communication, the request concentration by highlight scenes influences the traffic load owing to data unavailability. To avoid data unavailability, we adapted two live streaming features: (1) streaming data while switching the video quality, and (2) time variability of the number of requests. The second feature enables a fallback mechanism for the cache system by prioritizing cache eviction and terminating the transfer of cache-missed requests. This paper discusses the simulation results of the proposed mechanism, which adopts a request model appropriate for (a) avoiding peak traffic and (b) maintaining continuity of service.

  • Semantic Guided Infrared and Visible Image Fusion

    Wei WU  Dazhi ZHANG  Jilei HOU  Yu WANG  Tao LU  Huabing ZHOU  

     
    LETTER-Image

      Pubricized:
    2021/06/10
      Vol:
    E104-A No:12
      Page(s):
    1733-1738

    In this letter, we propose a semantic guided infrared and visible image fusion method, which can train a network to fuse different semantic objects with different fusion weights according to their own characteristics. First, we design the appropriate fusion weights for each semantic object instead of the whole image. Second, we employ the semantic segmentation technology to obtain the semantic region of each object, and generate special weight maps for the infrared and visible image via pre-designed fusion weights. Third, we feed the weight maps into the loss function to guide the image fusion process. The trained fusion network can generate fused images with better visual effect and more comprehensive scene representation. Moreover, we can enhance the modal features of various semantic objects, benefiting subsequent tasks and applications. Experiment results demonstrate that our method outperforms the state-of-the-art in terms of both visual effect and quantitative metrics.

  • A Low-Latency Inference of Randomly Wired Convolutional Neural Networks on an FPGA

    Ryosuke KURAMOCHI  Hiroki NAKAHARA  

     
    PAPER

      Pubricized:
    2021/06/24
      Vol:
    E104-D No:12
      Page(s):
    2068-2077

    Convolutional neural networks (CNNs) are widely used for image processing tasks in both embedded systems and data centers. In data centers, high accuracy and low latency are desired for various tasks such as image processing of streaming videos. We propose an FPGA-based low-latency CNN inference for randomly wired convolutional neural networks (RWCNNs), whose layer structures are based on random graph models. Because RWCNNs have several convolution layers that have no direct dependencies between them, our architecture can process them efficiently using a pipeline method. At each layer, we need to use the calculation results of multiple layers as the input. We use an FPGA with HBM2 to enable parallel access to the input data with multiple HBM2 channels. We schedule the order of execution of the layers to improve the pipeline efficiency. We build a conflict graph using the scheduling results. Then, we allocate the calculation results of each layer to the HBM2 channels by coloring the graph. Because the pipeline execution needs to be properly controlled, we developed an automatic generation tool for hardware functions. We implemented the proposed architecture on the Alveo U50 FPGA. We investigated a trade-off between latency and recognition accuracy for the ImageNet classification task by comparing the inference performances for different input image sizes. We compared our accelerator with a conventional accelerator for ResNet-50. The results show that our accelerator reduces the latency by 2.21 times. We also obtained 12.6 and 4.93 times better efficiency than CPU and GPU, respectively. Thus, our accelerator for RWCNNs is suitable for low-latency inference.

  • Representation Learning of Tongue Dynamics for a Silent Speech Interface

    Hongcui WANG  Pierre ROUSSEL  Bruce DENBY  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:12
      Page(s):
    2209-2217

    A Silent Speech Interface (SSI) is a sensor-based, Artificial Intelligence (AI) enabled system in which articulation is performed without the use of the vocal chords, resulting in a voice interface that conserves the ambient audio environment, protects private data, and also functions in noisy environments. Though portable SSIs based on ultrasound imaging of the tongue have obtained Word Error Rates rivaling that of acoustic speech recognition, SSIs remain relegated to the laboratory due to stability issues. Indeed, reliable extraction of acoustic features from ultrasound tongue images in real-life situations has proven elusive. Recently, Representation Learning has shown considerable success in learning underlying structure in noisy, high-dimensional raw data. In its unsupervised form, Representation Learning is able to reveal structure in unlabeled data, thus greatly simplifying the data preparation task. In the present article, a 3D Convolutional Neural Network architecture is applied to unlabeled ultrasound images, and is shown to reliably predict future tongue configurations. By comparing the 3DCNN to a simple previous-frame predictor, it is possible to recognize tongue trajectories comprising transitions between regions of stability that correlate with formant trajectories in a spectrogram of the signal. Prospects for using the underlying structural representation to provide features for subsequent speech processing tasks are presented.

  • Determining Memory Polynomial Model Parameters from Those of Complex p-th Order Inverse for Designing Predistorter

    Michiharu NAKAMURA  Eisuke FUKUDA  Yoshimasa DAIDO  Keiichi MIZUTANI  Takeshi MATSUMURA  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/06/01
      Vol:
    E104-B No:11
      Page(s):
    1429-1440

    Non-linear behavioral models play a key role in designing digital pre-distorters (DPDs) for non-linear power amplifiers (NLPAs). In general, more complex behavioral models have better capability, but they should be converted into simpler versions to assist implementation. In this paper, a conversion from a complex fifth order inverse of a parallel Wiener (PRW) model to a simpler memory polynomial (MP) model is developed by using frequency domain expressions. In the developed conversion, parameters of the converted MP model are calculated from those of original fifth order inverse and frequency domain statistics of the transmit signal. Since the frequency domain statistics of the transmit signal can be precalculated, the developed conversion is deterministic, unlike the conventional conversion that identifies a converted model from lengthy input and output data. Computer simulations are conducted to confirm that conversion error is sufficiently small and the converted MP model offers equivalent pre-distortion to the original fifth order inverse.

101-120hit(1942hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.