Tuan Thanh TA Shoichi TANIFUJI Suguru KAMEDA Noriharu SUEMATSU Tadashi TAKAGI Kazuo TSUBOUCHI
In this paper, we propose a novel baseband (BB) phase shifter (PS) using a fixed-gain-amplifier (FGA) matrix. The proposed BB PS consists of 5 stages of a vector synthesis type FGA matrix with in-phase/quadrature-phase (I/Q) input/output interfaces. In order to achieve low gain variation between phase shift states, 3rd to 5th stages are designed to have a phase shift of +φi and -φi (i=3,4,5). To change between +φi and -φi phase shift states, two FGAs with DC bias in-phase/out-phase switches are used. The two FGAs have the same gain, therefore ideally no gain variation can be achieved. Using this configuration, phase shift error and gain variation caused by process mismatch and temperature variation can be reduced. Fabricated 5-bit BB PS has 3-dB bandwidth of 1.05GHz, root-mean-square (rms) phase errors lower than 2.2°, rms gain variations lower than 0.42dB. Power consumption of the PS core and output buffer are 4.9mW and 14.3mW, respectively. 1-dB compression output power is -12.5dBm. The fabricated PS shows that the total phase shift error and gain variation are within the required accuracy of a 5-bit PS with no requirement of calibration.
This paper presents a DC output voltage-boosting antenna with high input impedance in wide frequency band for RF (radio frequency) energy harvesting of FM broadcasting signals. Target input power level of -20dBm is used to design a loop antenna for DC output voltage-boosting. The RF energy harvesting on YNU campus provides 924mV DC output for a single rectenna and 1.72V DC output for twin rectennas by receiving several FM broadcasting wave simultaneously.
Hiroshi HIRAYAMA Tomohiro AMANO Nobuyoshi KIKUMA Kunio SAKAKIBARA
Self-resonant helical antenna and capacitor-loaded helical antenna of the same dimension for coupled-resonant wireless power transfer is discussed. At first, fundamental difference of the self-resonant and the capacitor-loaded antenna is demonstrated by calculating electric- and magnetic-coupling coefficient. Next, performance of the helical antennas are discussed from viewpoints of 1) transmission efficiency, 2) undesired emission, 3) near-field leakage, 4) effect of human body and 5) effect of conductivity. We have found that the self-resonant helical antenna has an advantage in low transmission loss due to a conductivity of wire. On the other hand, the capacitor-loaded antenna has an advantage in low emission, long transfer distance, and low influence of resonant frequency from human body. This is because both electric-field coupling and magnetic-field coupling are dominant for the self-resonant antenna while only magnetic-field coupling is dominant in the capacitor-loaded antenna.
Yaolong QI Weixian TAN Xueming PENG Yanping WANG Wen HONG
Near range microwave imaging systems have broad application prospects in the field of concealed weapon detection, biomedical imaging, nondestructive testing, etc. In this paper, the technique of optimized sparse antenna array is applied to near range microwave imaging, which can greatly reduce the complexity of imaging systems. In detail, the paper establishes three-dimensional sparse array imaging geometry and corresponding echo model, where the imaging geometry is formed by arranging optimized sparse antenna array in elevation, scanning in azimuth and transmitting broadband signals in range direction; and by analyzing the characteristics of near range imaging, that is, the maximum interval of transmitting and receiving elements is limited by the range from imaging system to targets, we propose the idea of piecewise sparse line array; secondly, by analyzing the convolution principle, we develop a method of arranging piecewise sparse array which can generate the same distribution of equivalent phase centers as filled antenna array; then, the paper deduces corresponding imaging algorithm; finally, the imaging geometry and corresponding algorithm proposed in this paper are investigated and verified via numerical simulations and near range imaging experiments.
Naoki HONMA Kentaro NISHIMORI Hiroaki SATO Yoshitaka TSUNEKAWA
This paper proposes the antenna arrangement for 2×2 MIMO (Multiple-Input Multiple-Output) sensor and evaluates the detection performance based on raytracing simulation. In this arrangement, the transmitting and receiving antennas are placed closely. Two types of the arrangement are considered. In the first method, all of the transmitting and receiving antennas are located closely. In the second method, two sets of the antennas are placed separately, and each set has one transmitting and one receiving antennas. The numerical analysis of the indoor propagation based on the raytracing method is carried out. The path distribution and intrusion detection performance with the various antenna arrangements are evaluated for the human positions all over the room. The numerical analysis results show that the proposed antenna arrangements achieve the compact configuration of the sensor antenna system as well as high detection performance.
Yuki DOI Hiroki MORIYA Koichi ICHIGE Hiroyuki ARAI Takahiro HAYASHI Hiromi MATSUNO Masayuki NAKANO
This paper presents a method of synthesizing covariance matrix elements of array input signal for high resolution 2-D Direction-Of-Arrival (DOA) estimation via antenna (sensor) switching. Antenna array generally has the same number of array elements and receiver modules which often leads large receiver hardware cost. Two of the authors have already studied a way of antenna switching to reduce receiver cost, but it can be applied only for periodic incident signals like sinusoid. In this paper, we propose two simple methods of DOA estimation from sparse data by synthesizing covariance matrix elements of array input signal via antenna switching, which can also be applied to DOA estimation of antiperiodic incident signals. Performance of the proposed approach is evaluated in detail through some computer simulation.
Tsutomu ITO Mio NAGATOSHI Shingo TANAKA Hisashi MORISHITA
Folded dipole antenna with feed line (FDAFL) whose relative bandwidth is 65% (VSWR≤3) has been reported as a wideband planar antenna for a small terminal. However, this antenna is constructed outside of the ground plane (50×80mm2) by 12mm. In this study, we analyze the antenna configurations of FDAFL in 3D so that the antenna does not protrude from the ground plane as much as possible. Two different 3D antenna models derived from FDAFL are investigated. The first model is folded over the ground plane, and the second one is folded outside of the ground plane. The relative bandwidth, the VSWR characteristics and radiation patterns are studied. As a result, it is confirmed that antenna prominence could be reduced and broadband characteristics over 74% and 83% are obtained by the 3D models, respectively, which are wider than the bandwidth of conventional 2D model. Thus, FDAFL could be used in both 2D and 3D for a small terminal.
Yuki KIMURA Sakuyoshi SAITO Yuichi KIMURA
This paper presents design and radiation properties of a radial line microstrip antenna array (RL-MSAA) for linear polarization. A stacked circular microstrip antenna (C-MSA) is used as a radiation element for the RL-MSAA. Radiation phase of the stacked C-MSA is controlled by tuning radii of the lower and upper patches, therefore, the desired phase distribution of the RL-MSAA can be designed. In this paper, a linearly polarized RL-MSAA with three concentric rows of the stacked C-MSAs at a spacing of 0.65 wavelengths for uniform aperture distribution is designed and tested in 12GHz. The experimental results reveal that validity of the linearly polarized RL-MSAA with the stacked C-MSAs for radiation phase control is demonstrated.
Jisoo BAEK Youngki LEE Jaehoon CHOI
A wideband on-body antenna for a wireless body area network for an Industrial, Scientific, and Medical band is proposed. A wideband characteristic is achieved by combining two zeroth-order resonance (ZOR) modes at adjacent frequencies by controlling the value of the shunt capacitance. The size of the proposed antenna is 0.072λ0 × 0.33λ0, and the measured 10-dB return loss bandwidth is 340MHz (14.3%). In addition, the resonance frequencies operating in the ZOR mode are insensitive to the effects of the human body by virtue of the ZOR characteristic.
The 4 lowest Transverse-Electric modes of a cylindrical Dielectric Resonator Antenna were investigated using a commercially available simulation software. All 4 modes were shown to produce dipole or multi-pole radiation patterns, having Transverse-Electric polarization as opposed to Transverse-Magnetic as with conventional wire antennas. The even numbered modes were shown to be applicable to the niche application of small Unmanned Aerial Vehicles to ground station communications. A practical design for the lowest order even mode was prepared, and successfully demonstrated on a carbon fiber reinforced plastic ground plane. That design was then shown in simulation to have less adverse interaction when installed on a common small Unmanned Aerial Vehicle airframe at the new 5.05GHz telemetry band than an off-airframe dipole.
Kensuke SAITO Daijiro ISHIBASHI Nobuhiro KUGA
In this letter, we propose a partial impedance-matching method using a two-strip resonator for noncontact Passive Intermodulation (PIM) measurements using a coaxial tube. It is shown that the strip closer to the inner tube of the coaxial tube is dominant in the observed PIM characteristics while both strips are excited equally. The ideal efficiency of power to each strip is 50%, which is a significant improvement in comparison with conventional methods.
Dongjin KIM Jiro HIROKAWA Kimio SAKURAI Makoto ANDO Takuma TAKADA Tadao NAGATSUMA Jun TAKEUCHI Akihiko HIRATA
We design and fabricate a double-layer hollow-waveguide slot array antenna with wide bandwidth and high antenna efficiency for the 120 GHz band. The antenna is fabricated by diffusion bonding of laminated thin metal plates for high precision and perfect electrical contact. The 1616-element antenna shows more than 70% antenna efficiency over a 13 GHz bandwidth. Furthermore, it realizes error-free data transmission in 2.5 m distance at up to 10 Gbit/s. To our knowledge, this is the first report of the design and fabrication of a high-efficiency wideband planar antenna for the 120 GHz band.
Kengo NISHIMOTO Takeshi OSHIMA Toru FUKASAWA Hiroaki MIYASHITA Yoshihiko KONISHI Manabu KURIHARA Yoshiyuki CHATANI
We propose a simple and small phase shifter for a beam-steerable base-station antenna. This phase shifter has no metallic heterojunction, and the phase shift is controlled by moving an M-shaped dielectric plate between the strip conductor and the ground plane of a strip line. We derive a design equation from the condition that at the center frequency f0, the reflection coefficient = 0. In this phase shifter, the reflection coefficient becomes minimum at f0 regardless of the movement distance, r, of the dielectric plate, and the relationship between the phase shift and r is linear. These characteristics are verified by performing simulations and measurements. The size of the M-shaped dielectric phase shifter is 0.27λ00.12λ0, where λ0 is the free-space wavelength at f0. The insertion loss is smaller than about 0.2 dB within a fractional bandwidth of 10%, and the phase shift can vary from 0 to about 80 degrees.
Zhangjun FAN Daoxing GUO Bangning ZHANG Youyun XU
This letter investigates the outage performance of a joint transmit and receive antenna selection scheme in an amplify-and-forward two-way relaying system with channel estimation error. A closed-form approximate outage probability expression is derived, based on which the asymptotic outage probability expression is derived to get an insight on system's outage performance at high signal-to-noise (SNR) region. Monte Carlo simulation results are presented to verify the analytical results.
Motoharu SASAKI Wataru YAMADA Naoki KITA Takatoshi SUGIYAMA
A new path loss model of interference between mobile terminals in a residential area is proposed. The model uses invertible formulas and considers the effects on path loss characteristics produced by paths having many corners or corners with various angles. Angular profile and height pattern measurements clarify three paths that are dominant in terms of their effect on the accurate modeling of path loss characteristics in residential areas: paths along a road, paths between houses, and over-roof propagation paths. Measurements taken in a residential area to verify the model's validity show that the model is able to predict path loss with greater accuracy than conventional models.
Xianling WANG Xin ZHANG Hongwen YANG Dacheng YANG
This paper investigates the transmission capacity of open-loop spatial multiplexing with zero-forcing receivers in overlaid ad hoc networks. We first derive asymptotic closed-form expressions for the transmission capacity of two coexisting networks (a primary network vs. a secondary network). We then address a special case with equal numbers of transmit and receive antennas through exact analysis. Numerical results validate the accuracy of our expressions. Our findings show that the overall transmission capacity of coexisting networks will improve significantly over that of a single network if the primary network can tolerate a slight outage probability increase. This improvement can be further boosted if more streams are configured in the spatial multiplexing scheme; less improvement is achieved by placing more antennas at the receive side than the transmit side. However, when the stream number exceeds a certain limit, spatial multiplexing will produce negative effect for the overlaid network.
This paper presents a bistatic remote sensing system to efficiently estimate the characteristics of sea swell near a harbor by receiving and processing global navigation satellite system signals transmitted in line-of-sight channels and fading multipath channels. The new system is designed to measure and monitor sea swell to improve the safety of mooring and navigation services in or around harbors, and long-term measurement also will provide valuable hydrologic data for harbor construction or reconstruction. The system uses two sets of antennas. One is a conventional antenna to receive line-of-sight signal and mitigate the disturbances from multiple propagation paths, and the other is a left hand circular polarization arrayed antenna to receive reflected signals from sea-surface. In particular, a wide bandwidth RF/IF front-end is designed to process reflected signals with high sampling frequency. A software receiver is developed to provide information from satellites and line-of-sight signals, and a wave characteristic estimator is also developed to process reflected signals. More specifically, correlators and Teager-Kaiser energy operator are combined to detect and depict reflected signals. Wave propagation of sea swell can be accurately mapped using intensity and relative time delays of reflected signals. The operational performance of the remote sensing system was also evaluated by numerical simulations. The results confirm that wavelength and wave period can be measured precisely by the proposed bistatic ocean wave remote sensing system.
Ann-Chen CHANG Chih-Chang SHEN
This letter presents an effective direction of arrival (DOA) estimator that is based on the orthogonal projection (OP) technique. When an OP matrix is attained, the proposed estimator, which dispenses with spatial smoothing (SS) preprocessing, can form the maximizing orthogonality for a single snapshot. Since this technique does not need to perform eigen-decomposition while maintaining better DOA estimates, it also has real-time DOA estimation capability. Numerical results are presented to illustrate the efficiency of this method.
Young Seung LEE Seung Keun PARK
The problem of a finite monopole antenna driven by a coaxial cable is revisited. On the basis of a variable bound approach, the radiated field around a monopole antenna can be represented in terms of the discrete modal summation. This theoretical model allows us to avoid the difficulties experienced when dealing with integral equations having different wavenumber spectra and ensures a solution in a convergent series form so that it is numerically efficient. The behaviors of the input admittance and the current distribution to characterize the monopole antenna are shown for different coaxial-antenna geometries and also compared with other existing results.
Haiyan XU Qian TIAN Jianhui WU Fulong JIANG
In this paper we establish a secure communication model where eavesdropper and intended receiver have multiple antennas. We use cooperation and jamming to achieve physical layer security. First, we study how to allocate power between the information bearing signal and the jamming signal. Second, based on this model, we also jointly optimize both the information bearing signal weights and the jamming signal weights to improve physical layer security. The optimal power allocation and the weights are obtained via an iteration algorithm to maximize the secrecy rate. Comparing with equal power allocation and some other different methods, it shows that using cooperative relaying and jamming can significantly improve the physical layer security from the simulation results.