Keyword Search Result

[Keyword] interference(858hit)

21-40hit(858hit)

  • On the Degrees of Freedom of a Propagation-Delay Based Multicast X Channel with Two Transmitters and Arbitrary Receivers

    Conggai LI  Qian GAN  Feng LIU  Yanli XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/23
      Vol:
    E106-B No:3
      Page(s):
    267-274

    Compared with the unicast scenario, X channels with multicast messaging can support richer transmission scenarios. The transmission efficiency of the wireless multicast X channel is an important and open problem. This article studies the degrees of freedom of a propagation-delay based multicast X channel with two transmitters and arbitrary receivers, where each transmitter sends K different messages and each receiver desires K - 1 of them from each transmitter. The cyclic polynomial approach is adopted for modeling and analysis. The DoF upper bound is analyzed and shown to be unreachable. Then a suboptimal scheme with one extra time-slot cycle is proposed, which uses the cyclic interference alignment method and achieves a DoF of K - 1. Finally, the feasibility conditions in the Euclidean space are derived and the potential applications are demonstrated for underwater acoustic and terrestrial radio communications.

  • Asynchronous NOMA Downlink Based on Single-Carrier Frequency-Domain Equalization

    Tomonari KURAYAMA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1173-1180

    Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.

  • Joint Design of Transmitting Waveform and Receiving Filter for Colocated MIMO Radar

    Ningkang CHEN  Ping WEI  Lin GAO  Huaguo ZHANG  Hongshu LIAO  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/03/14
      Vol:
    E105-A No:9
      Page(s):
    1330-1339

    This paper aims to design multiple-input multiple-output (MIMO) radar receiving weights and transmitting waveforms, in order to obtain better spatial filtering performance and enhance the robustness in the case of signal-dependent interference and jointly inaccurate estimated angles of target and interference. Generally, an alternate iterative optimization algorithm is proposed for the joint design problem. Specifically, the receiving weights are designed by the generalized eigenvalue decomposition of the matrix which contains the estimated information of the target and interference. As the cost function of the transmitting waveform design is fractional, the fractional optimization problem is first converted into a secondary optimization problem. Based on the proposed algorithm, a closed-form solution of the waveform is given using the alternating projection. At the analysis stage, in the presence of estimated errors under the environment of signal-dependent interference, a robust signal-to-interference and noise ratio (SINR) performance is obtained using a small amount of calculation with an iterative procedure. Numerical examples verify the effectiveness of the performances of the designed waveform in terms of the SINR, beampattern and pulse compression.

  • Asynchronous Periodic Interference Signals Cancellation in Frequency Domain

    Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1087-1096

    This paper proposes a novel interference cancellation technique that prevents radio receivers from degrading due to periodic interference signals caused by electromagnetic waves emitted from high power circuits. The proposed technique cancels periodic interference signals in the frequency domain, even if the periodic interference signals drift in the time domain. We propose a drift estimation based on a super resolution technique such as ESPRIT. Moreover, we propose a sequential drift estimation to enhance the drift estimation performance. The proposed technique employs a linear filter based on the minimum mean square error criterion with assistance of the estimated drifts for the interference cancellation. The performance of the proposed technique is confirmed by computer simulation. The proposed technique achieves a gain of more than 40dB at the higher frequency part in the band. The proposed canceler achieves such superior performance, if the parameter sets are carefully selected. The proposed sequential drift estimation relaxes the parameter constraints, and enables the proposed cancellation to achieve the performance upper bound.

  • Joint User Association and Spectrum Allocation in Satellite-Terrestrial Integrated Networks

    Wenjing QIU  Aijun LIU  Chen HAN  Aihong LU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/15
      Vol:
    E105-B No:9
      Page(s):
    1063-1077

    This paper investigates the joint problem of user association and spectrum allocation in satellite-terrestrial integrated networks (STINs), where a low earth orbit (LEO) satellite access network cooperating with terrestrial networks constitutes a heterogeneous network, which is beneficial in terms of both providing seamless coverage as well as improving the backhaul capacity for the dense network scenario. However, the orbital movement of satellites results in the dynamic change of accessible satellites and the backhaul capacities. Moreover, spectrum sharing may be faced with severe co-channel interferences (CCIs) caused by overlapping coverage of multiple access points (APs). This paper aims to maximize the total sum rate considering the influences of the dynamic feature of STIN, backhaul capacity limitation and interference management. The optimization problem is then decomposed into two subproblems: resource allocation for terrestrial communications and satellite communications, which are both solved by matching algorithms. Finally, simulation results show the effectiveness of our proposed scheme in terms of STIN's sum rate and spectrum efficiency.

  • Mach-Zehnder Optical Modulator Integrated with Tunable Multimode Interference Coupler of Ti:LiNbO3 Waveguides for Controlling Modulation Extinction Ratio

    Anna HIRAI  Yuichi MATSUMOTO  Takanori SATO  Tadashi KAWAI  Akira ENOKIHARA  Shinya NAKAJIMA  Atsushi KANNO  Naokatsu YAMAMOTO  

     
    BRIEF PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/02/16
      Vol:
    E105-C No:8
      Page(s):
    385-388

    A Mach-Zehnder optical modulator with the tunable multimode interference coupler was fabricated using Ti-diffused LiNbO3. The modulation extinction ratio could be voltage controlled to maximize up to 50 dB by tuning the coupler. Optical single-sideband modulation was also achieved with a sideband suppression ratio of more than 30 dB.

  • A Novel Method for Adaptive Beamforming under the Strong Interference Condition

    Zongli RUAN  Hongshu LIAO  Guobing QIAN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/08/02
      Vol:
    E105-A No:2
      Page(s):
    109-113

    In this letter, firstly, a novel adaptive beamformer using independent component analysis (ICA) algorithm is proposed. By this algorithm, the ambiguity of amplitude and phase resulted from blind source separation is removed utilizing the special structure of array manifolds matrix. However, there might exist great calibration error when the powers of interferences are far larger than that of desired signal at many applications such as sonar, radio astronomy, biomedical engineering and earthquake detection. As a result, this will lead to a significant reduction in separation performance. Then, a new method based on the combination of ICA and primary component analysis (PCA) is proposed to recover the desired signal's amplitude under strong interference. Finally, computer simulation is carried out to indicate the effectiveness of our methods. The simulation results show that the proposed methods can obtain higher SNR and more accurate power estimation of desired signal than diagonal loading sample matrix inversion (LSMI) and worst-case performance optimization (WCPO) method.

  • In-Band Full-Duplex-Applicable Area Expansion by Inter-User Interference Reduction Using Successive Interference Cancellation

    Shota MORI  Keiichi MIZUTANI  Hiroshi HARADA  

     
    PAPER

      Pubricized:
    2021/09/02
      Vol:
    E105-B No:2
      Page(s):
    168-176

    In-band full-duplex (IBFD) has been an attractive technology, which can theoretically double the spectral efficiency. However, when performing IBFD in the dynamic-duplex cellular (DDC) system, inter-user interference (IUI) deteriorates transmission performance in downlink (DL) communication and limits IBFD-applicable area and IBFD application ratio. In this paper, to expand the IBFD-applicable area and improve the IBFD application ratio, we propose an IUI reduction scheme using successive interference cancellation (SIC) for the DDC system. SIC can utilize the power difference and reduce the signal with the higher power. The effectiveness of the proposed scheme is evaluated by the computer simulation. The IUI reducing effect on the IBFD-inapplicable area is confirmed when the received power of the IUI is stronger than that of the desired signal at the user equipment for DL (DL-UE). The IBFD-inapplicable area within 95m from the DL-UE, where the IBFD does not work without the proposed scheme, can reduce by 43.6% from 52.8% to 9.2% by applying the proposed scheme. Moreover, the IBFD application ratio can improve by 24.6% from 69.5% to 94.1%.

  • Signature Codes to Remove Interference Light in Synchronous Optical Code-Division Multiple Access Systems Open Access

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  Kyohei ONO  

     
    PAPER-Coding Theory

      Pubricized:
    2021/05/06
      Vol:
    E104-A No:11
      Page(s):
    1619-1628

    This paper proposes a new class of signature codes for synchronous optical code-division multiple access (CDMA) and describes a general method for construction of the codes. The proposed codes can be obtained from generalized modified prime sequence codes (GMPSCs) based on extension fields GF(q), where q=pm, p is a prime number, and m is a positive integer. It has been reported that optical CDMA systems using GMPSCs remove not only multi-user interference but also optical interference (e.g., background light) with a constant intensity during a slot of length q2. Recently, the authors have reported that optical CDMA systems using GMPSCs also remove optical interference with intensity varying by blocks with a length of q. The proposed codes, referred to as p-chip codes in general and chip-pair codes in particular for the case of p=2, have the property of removing interference light with an intensity varying by shorter blocks with a length of p without requiring additional equipment. The present paper also investigates the algebraic properties and applications of the proposed codes.

  • ZigZag Antenna Configuration for MmWave V2V with Relay in Typical Road Scenarios: Design, Analysis and Experiment

    Yue YIN  Haoze CHEN  Zongdian LI  Tao YU  Kei SAKAGUCHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/04/09
      Vol:
    E104-B No:10
      Page(s):
    1307-1317

    Communication systems operating in the millimeter-wave (mmWave) band have the potential to realize ultra-high throughput and ultra-low latency vehicle-to-vehicle (V2V) communications in 5G and beyond wireless networks. Moreover, because of the weak penetration nature of mmWave, one mmWave channel can be reused in all V2V links, which improves the spectrum efficiency. Although the outstanding performance of the mmWave above has been widely acknowledged, there are still some shortcomings. One of the unavoidable defects is multipath interference. Even though the direct interference link cannot penetrate vehicle bodies, other interference degrades the throughput of the mmWave V2V communication. In this paper, we focus on the multipath interference caused by signal reflections from roads and surroundings, where the interference strength varies in road scenarios. Firstly, we analyze the multipath channel models of mmWave V2V with relay in three typical road scenarios (single straight roads, horizontal curves, and slopes). Their interference differences are clarified. Based on the analysis, a novel method of ZigZag antenna configuration is proposed to guarantee the required data rate. Secondly, the performance of the proposed method is evaluated by simulation. It proves that the ZigZag antenna configuration with an optimal antenna height can significantly suppress the destructive interference, and ensure a throughput over 1Gbps comparing to the conventional antenna configuration at 60GHz band. Furthermore, the effectiveness of ZigZag antenna configuration is demonstrated on a single straight road by outdoor experiments.

  • Optical CDMA Scheme Using Generalized Modified Prime Sequence Codes and Extended Bi-Orthogonal Codes Open Access

    Kyohei ONO  Shoichiro YAMASAKI  Shinichiro MIYAZAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1329-1338

    Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.

  • Frequency-Domain Iterative Block DFE Using Erasure Zones and Improved Parameter Estimation

    Jian-Yu PAN  Kuei-Chiang LAI  Yi-Ting LI  Szu-Lin SU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1159-1171

    Iterative block decision feedback equalization with hard-decision feedback (HD-IBDFE) was proposed for single-carrier transmission with frequency-domain equalization (SC-FDE). The detection performance hinges upon not only error propagation, but also the accuracy of estimating the parameters used to re-compute the equalizer coefficients at each iteration. In this paper, we use the erasure zone (EZ) to de-emphasize the feedback values when the hard decisions are not reliable. EZ use also enables a more accurate, and yet computationally more efficient, parameter estimation method than HD-IBDFE. We show that the resulting equalizer coefficients share the same mathematical form as that of the HD-IBDFE, thereby preserving the merit of not requiring matrix inverse operations in calculating the equalizer coefficients. Simulations show that, by using the EZ and the proposed parameter estimation method, a significant performance improvement over the conventional HD-IBDFE can be achieved, but with lower complexity.

  • TDM Based Reference Signal Multiplexing for OFDM Using Faster-than-Nyquist Signaling

    Tsubasa SHOBUDANI  Mamoru SAWAHASHI  Yoshihisa KISHIYAMA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1079-1088

    This paper proposes time division multiplexing (TDM) based reference signal (RS) multiplexing for faster-than-Nyquist (FTN) signaling using orthogonal frequency division multiplexing (OFDM). We also propose a subframe structure in which a cyclic prefix (CP) is appended to only the TDM based RS block and the first FTN symbol to achieve accurate estimation of the channel response in a multipath fading channel with low CP overhead. Computer simulation results show that the loss in the required average received SNR satisfying the average block error rate (BLER) of 10-2 using the proposed TDM based RS multiplexing from that with ideal channel estimation is suppressed to within approximately 1.2dB and 1.7dB for QPSK and 16QAM, respectively. This is compared to when the improvement ratio of the spectral efficiency from CP-OFDM is 1.31 with the rate-1/2 turbo code. We conclude that the TDM based RS multiplexing with the associated CP multiplexing is effective in achieving accurate channel estimation for FTN signaling using OFDM.

  • Joint Multi-Layered User Clustering and Scheduling for Ultra-Dense RAN Using Distributed MIMO

    Ryo TAKAHASHI  Hidenori MATSUO  Fumiyuki ADACHI  

     
    PAPER

      Pubricized:
    2021/03/29
      Vol:
    E104-B No:9
      Page(s):
    1097-1109

    Ultra-densification of radio access network (RAN) is essential to efficiently handle the ever-increasing mobile data traffic. In this paper, a joint multi-layered user clustering and scheduling is proposed as an inter-cluster interference coordination scheme for ultra-dense RAN using cluster-wise distributed MIMO transmission/reception. The proposed joint multi-layered user clustering and scheduling consists of user clustering using the K-means algorithm, user-cluster layering (called multi-layering) based on the interference-offset-distance (IOD), cluster-antenna association on each layer, and layer-wise round-robin-type scheduling. The user capacity, the sum capacity, and the fairness are evaluated by computer simulations to show the effectiveness of the proposed joint multi-layered user clustering and scheduling. Also shown are uplink and downlink capacity comparisons and optimal IOD setting considering the trade-off between inter-cluster interference mitigation and transmission opportunity.

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • Mutual Information Approximation Based Polar Code Design for 4Tb/in2 2D-ISI Channels

    Lingjun KONG  Haiyang LIU  Jin TIAN  Shunwai ZHANG  Shengmei ZHAO  Yi FANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/02/16
      Vol:
    E104-A No:8
      Page(s):
    1075-1079

    In this letter, a method for the construction of polar codes based on the mutual information approximation (MIA) is proposed for the 4Tb/in2 two-dimensional inter-symbol interference (2D-ISI) channels, such as the bit-patterned magnetic recording (BPMR) and two-dimensional magnetic recording (TDMR). The basic idea is to exploit the MIA between the input and output of a 2D detector to establish a log-likelihood ratio (LLR) distribution model based on the MIA results, which compensates the gap caused by the 2D ISI channel. Consequently, the polar codes obtained by the optimization techniques previously developed for the additive white Gaussian noise (AWGN) channels can also have satisfactory performances over 2D-ISI channels. Simulated results show that the proposed polar codes can outperform the polar codes constructed by the traditional methods over 4Tb/in2 2D-ISI channels.

  • Distributed Detection of MIMO Spatial Multiplexed Signals in Terminal Collaborated Reception

    Fengning DU  Hidekazu MURATA  Mampei KASAI  Toshiro NAKAHIRA  Koichi ISHIHARA  Motoharu SASAKI  Takatsune MORIYAMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/29
      Vol:
    E104-B No:7
      Page(s):
    884-892

    Distributed detection techniques of multiple-input multiple-output (MIMO) spatially multiplexed signals are studied in this paper. This system considered employs multiple mobile stations (MSs) to receive signals from a base station, and then share their received signal waveforms with collaborating MSs. In order to reduce the amount of traffic over the collaborating wireless links, distributed detection techniques are proposed, in which multiple MSs are in charge of detection by making use of both the shared signal waveforms and its own received waveform. Selection combining schemes of detected bit sequences are studied to finalize the decisions. Residual error coefficients in iterative MIMO equalization and detection are utilized in this selection. The error-ratio performance is elucidated not only by computer simulations, but also by offline processing using experimental signals recorded in a measurement campaign.

  • Highly Reliable Radio Access Scheme by Duplicate Transmissions via Multiple Frequency Channels and Suppressed Useless Transmission under Interference from Other Systems

    Hideya SO  Takafumi FUJITA  Kento YOSHIZAWA  Maiko NAYA  Takashi SHIMIZU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/12/04
      Vol:
    E104-B No:6
      Page(s):
    696-704

    This paper proposes a novel radio access scheme that uses duplicated transmission via multiple frequency channels to achieve mission critical Internet of Things (IoT) services requiring highly reliable wireless communications; the interference constraints that yield the required reliability are revealed. To achieve mission critical IoT services by wireless communication, it is necessary to improve reliability in addition to satisfying the required transmission delay time. Reliability is defined as the packet arrival rate without exceeding the desired transmission delay time. Traffic of the own system and interference from the other systems using the same frequency channel such as unlicensed bands degrades the reliability. One solution is the frequency/time diversity technique. However, these techniques may not achieve the required reliability because of the time taken to achieve the correct reception. This paper proposes a novel scheme that transmits duplicate packets utilizing multiple wireless interfaces over multiple frequency channels. It also proposes a suppressed duplicate transmission (SDT) scheme, which prevents the wastage of radio resources. The proposed scheme achieves the same reliable performance as the conventional scheme but has higher tolerance against interference than retransmission. We evaluate the relationship between the reliability and the occupation time ratio where the interference occupation time ratio is defined as the usage ratio of the frequency resources occupied by the other systems. We reveal the upper bound of the interference occupation time ratio for each frequency channel, which is needed if channel selection control is to achieve the required reliability.

  • Multi-Cell Interference Mitigation for MIMO Non-Orthogonal Multiple Access Systems

    Changyong SHIN  Jiho HAN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/11/16
      Vol:
    E104-A No:5
      Page(s):
    838-843

    This letter proposes a downlink multiple-input multiple-output (MIMO) non-orthogonal multiple access technique that mitigates multi-cell interference (MCI) at cell-edge users, regardless of the number of interfering cells, thereby improving the spectral efficiency. This technique employs specific receive beamforming vectors at the cell-edge users in clusters to minimize the MCI. Based on the receive beamforming vectors adopted by the cell-edge users, the transmit beamforming vectors for a base station (BS) and the receive beamforming vectors for cell-center users are designed to eliminate the inter-cluster interference and maximize the spectral efficiency. As each user can directly obtain its own receive beamforming vector, this technique does not require channel feedback from the users to a BS to design the receive beamforming vectors, thereby reducing the system overhead. We also derive the upper bound of the average sum rate achievable using the proposed technique. Finally, we demonstrate through simulations that the proposed technique achieves a better sum rate performance than the existing schemes and that the derived upper bound is valid.

  • RPCA-Based Radio Interference Cancellation Algorithm for Compact HF Surface Wave Radar

    Di YAO  Aijun LIU  Hongzhi LI  Changjun YU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/10/15
      Vol:
    E104-A No:4
      Page(s):
    757-761

    In the user-congested high-frequency band, radio frequency interference (RFI) is a dominant factor that degrades the detection performance of high-frequency surface wave radar (HFSWR). Up to now, various RFI suppression algorithms have been proposed while they are usually inapplicable to the compact HFSWR because of the minimal array aperture. Therefore, this letter proposes a novel RFI mitigation scheme for compact HFSWR, even for single antenna. The scheme utilized the robust principal component analysis to separate RFI and target, based on the time-frequency distribution characteristics of the RFI. The effectiveness of this scheme is demonstrated by the measured data, which can effectively suppress RFI without losing target signal.

21-40hit(858hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.