1-9hit |
Heisuke SAKAI Yushi TSUJI Hideyuki MURATA
We integrate a pressure sensing capacitor and a low operation voltage OFET to develop a pressure sensor. The OFET was used as a readout device and an external pressure was loaded on the sensing capacitor. The OFET operates at less than 5 V and the change in the drain current in response to the pressure load (100 kPa) is two orders of magnitude.
This paper discusses issues in the design of analog-to-digital converters (ADCs) in nanoscale CMOS and introduces some experimental designs incorporating techniques to solve these issues. Technology scaling increases the maximum conversion rate, but it decreases the gain and the SNR. To maintain a high SNR level despite the low-voltage operation, the power consumption needs to be increased. Because of lowered supply voltages, the design of circuits based on operational amplifiers (OpAmps) has become more difficult. Designs without OpAmps have therefore received more attention. One way of realizing low-voltage pipeline ADCs is by using comparator-controlled current sources, instead of conventional OpAmps. Furthermore, successive approximation ADCs and sub-ranging ADCs do not require OpAmps and are therefore suitable for low-voltage operation. ADC designers are now searching for suitable architectures for future nanoscale CMOS processes.
Takeshi YOSHIDA Yoshihiro MASUI Takayuki MASHIMO Mamoru SASAKI Atsushi IWATA
A low-noise CMOS amplifier operating at a low supply voltage is developed using the two noise reduction techniques of autozeroing and chopper stabilization. The proposed amplifier utilizes a feedback with virtual grounded input-switches and a multiple-output switched op-amp. The low-noise amplifier fabricated in a 0.18-µm CMOS technology achieved 50-nV/
Jin-Hyeok CHOI Seong-Ik CHO Mu-Hun PARK Young-Hee KIM
We present a new multi-stage charge pump that is suitable for low-voltage operation, and in particular for low voltage flash memory. Compare to the Dickson charge pump and previously reported modified Dickson charge pumps, the proposed charge pump offers the improved pumping voltage gains. The proposed charge pump is composed of a pair of pumps and utilizes the internal boosted voltages of one side of the paired pumps as the charge transferring voltages to the other side. The simulated and measured results indicate that the proposed pump is highly efficient in overcoming both the pumping gain decrease and the current driving capability degradation caused by the threshold voltage of the charge-transfer gate.
Yasuo YAMAGUCHI Toshiyuki OASHI Takahisa EIMORI Toshiaki IWAMATSU Shouichi MITAMOTO Katsuhiro SUMA Takahiro TSURUDA Fukashi MORISHITA Masakazu HIROSE Hideto HIDAKA Kazutami ARIMOTO Kazuyasu FUJISHIMA Yasuo INOUE Tadashi NISHIMURA Hirokazu MIYOSHI
SOI DRAM's are candidates for giga-bit scale DRAM's due to the inherent features of SOI structure, and are also desired to be used as low-voltage memories which will be used in portable systems in the forthcoming multimedia era. However, some drawbacks are also anticipated owing to floating substrate effects. In this report, the advantages and problems concerning SOI DRAM's were reconsidered by evaluation of our test devices and also by analysis with device and circuit simulators for their future prospects. The following advantages of SOI DRAM's were verified. Low-voltage operation, active current reduction and speed gain were obtained by the reduced junction capacitance and the back-gate-bias effect. Static refresh characteristics were improved due to the reduced junction area. Soft error immunity was improved greatly by the complete isolation of the active region when the body potential is fixed. The problems that need to be resolved are closely related to the floating substrate effect. The soft error immunity in a floating body condition and the dynamic refresh characteristics were degraded by the instability of the floating body potential. Process and device approaches such as the field-shield-body-fixing method as well as circuit approaches like the BSG scheme are required to eliminate the floating substrate effects. From these investigations it can be said that a low-voltage DRAM with a current design rule would be possible if we pay close attention to the floating-substrate-related issues by optimizing various process/device and circuit techniques. With further development of the technology to suppress the floating substrate effects, it will be possible to develop simple and low-cost giga-bit level SOI DRAM's which use the SOI's inherent features to the full.
Fujihiko MATSUMOTO Yukio ISHIBASHI
According as the fine LSI process technique develops, the technique to reduce power dissipation of high-frequency integrated analog circuits is getting more important. This paper describes a design of high-frequency integrator with low power dissipation for monolithic leapfrog filters. In the design of the conventional monolithic integrators, there has been a great dfficulty that a high-frequency integrator which can operate at low supply voltage cannot be realized without additional circuits, such as unbalanced-to-balanced conversion circuits and common-mode feedback circuits. The proposed integrator is based on the Miller integrator. By a PNP current mirror circuit, high CMRR is realized. However, the high-frequency characteristic of the integrator is independent of PNP transistors. In addition, it can operate at low supply voltage. The excess phase shift of the integrator is compensated by insertion of the compensation capacitance. The effectiveness of the proposed technique is confirmed by PSPICE simulation. The simulation results of the integrator shows that the common-mode gain is efficiently low and the virtual ground is realized, and that moderate phase compensation can be achieved. The simulation results of the 3rd-order leapfrog filter using the integrator shows that the 50 MHz-cutoff frequency filter is obtained. Its power dissipation in operating 2 V-supply voltage is 5.22 mW.
Keiko INOSAKO Naotaka IWATA Masaaki KUZUHARA
This paper describes 950 GHz power performance of double-doped AlGaAs/InGaAs/AlGaAs heterojunction field-effect transistors (HJFET) operated at a drain bias voltage ranging from 2.5 to 3.5 V. The developed 1.0 µm gatelength HJFET exhibited a maximum drain current (Imax) of 500 mA/mm, a transconductance (gm) of 300 mS/mm, and a gate-to-drain breakdown voltage of 11 V. Operated at 3.0 V, a 17.5 mm gate periphery HJFET showed 1.4 W Pout and -50.3 dBc adjacent channel leakage power at a 50 kHz off-carrier frequency from 950 MHz with 50% PAE. Harmonic balance simulations revealed that the flat gm characteristics of the HJFET with respect to gate bias voltage are effective to suppress intermodulation distortion under large signal operation. The developed HJFET has great potential for small-sized digital cellular power applications operated at a low DC supply voltage.
Yasuo YAMAGUCHI Jun TAKAHASHI Takehisa YAMAGUCHI Tomohisa WADA Toshiaki IWAMATSU Hans-Oliver JOACHIM Yasuo INOUE Tadashi NISHIMURA Natsuro TSUBOUCHI
The stability of a high-resistivity load SRAM cell using thin-film SOI MOSFET's was investigated as compared with bulk-Si MOSFET's. In SOI MOSFET's back-gate-bias effect was suppressed by indirect application of back-gate-bias to the channel region through the thick buried oxide. The Vt shifts were reduced to be 10% and 14% of that in bulk-Si MOSFET's in partially and fully depleted devices, respectively. The reduction of back-gate-bias effect provides improvement of "high" output voltage and gain in the enhancement-enhancement (EE) inverter in a high-resistivity load SRAM cell, thereby offering improved cell stability. It was demonstrated by using partially depleted SOI SRAM cells that non-destructive reading was obtained even at a low drain voltage of 1.4 V without gate-potential boost, which was much smaller than the operation limit in a bulk Si SRAM with the same patterns and dimensions used as a reference. This implies that SOI devices can also offer low-voltage operation even in TFT-load cells used in up-to-date high-density SRAM's. These results suggest that thin-film SOI MOSFET's have a superior potential of low-voltage operation expected for further scaled devices and/or for portable systems in a forthcoming multimedia era.
Shin-ichi MINAMI Kazuaki UJIIE Masaaki TERASAWA Kazuhiro KOMORI Kazunori FURUSAWA Yoshiaki KAMIGAKI
A low-voltage operation and highly-reliable nonvoltatile semiconductor memory with a large capacity has been manufactured using 0.8-µm CMOS technology. This 3-volt, 1-Mbit, full-featured MONOS EEPROM has a chip size of 51.3 mm2 and a memory cell size of 23.1µm2. An asymmetric programming voltage method fully exploits the abilities of the MONOS device and provides 10-year data retention after 106 erase/write cycles. Because of its wide-margin circuit design, this EEPROM can also be operated at 5 volts. High-speed read out is provided by using the polycide word line and the differential sense amplifier with a MONOS dummy memory. New functions such as data protection with software and programming-end indication with a toggle bit are added, and chips are TSOP packaged for use in many kinds of portable equipment.