IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.73

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E89-B No.12  (Publication Date:2006/12/01)

    Special Section on Software Defined Radio Technology and Its Applications
  • FOREWORD Open Access

    Hiroshi HARADA  

     
    FOREWORD

      Page(s):
    3167-3167
  • An Overview of the U.S. and Japanese Approaches to Cognitive Radio and SDR Open Access

    James MILLER  

     
    INVITED PAPER

      Page(s):
    3168-3173

    "Cognitive radio" and "software-defined radio" (SDR) are today an important consideration in major spectrum debates in the United States. The U.S. drafted its first SDR rules in 2001, and since has continued efforts to resolve potential regulatory concerns and facilitate the benefits of the technology. At the same time, Japan has had a very rich experience in the lab with SDR, with significant achievements on many engineering topics. However, the regulatory state of SDR in Japan has not kept pace with the United States. Likewise cognitive radio, while a topic of inquiry, betrays a different focus. The paper explores why the paths for these technologies have diverged in the U.S. and Japan.

  • RF Technology Enablers for Software-Defined Radios Open Access

    Lawrence LARSON  

     
    INVITED PAPER

      Page(s):
    3174-3178

    RF system and circuit approaches for cognitive radios, based on software defined radio technology, are discussed. The increasing use of digital techniques, combined with wideband data converters and tunable front-end technologies, will enable these systems to become cost effective in the coming years.

  • A Survey on Dynamically Reconfigurable Processors Open Access

    Hideharu AMANO  

     
    INVITED PAPER

      Page(s):
    3179-3187

    Dynamically reconfigurable processors are consisting of an array of processing elements whose functions and interconnections can be dynamically changed. 9 commercial systems are picked up, and their array structures, processing elements and interconnection architectures are classified.

  • SDR-Based Reconfigurable Base Station Platform

    Duk-Bai KIM  Huirae CHO  Chanyong LEE  Gweon-Do JO  Jin-Up KIM  

     
    PAPER

      Page(s):
    3188-3196

    Wireless communications technology continues to change and yield new standards for satisfying the user demands. As a result, multiple standards coexist and wireless communications systems supporting different air interfaces cannot interact with one another. Software-defined radio is regarded as the most promising solution to cope with this problem. In this paper, we discuss the design considerations of SDR systems from a base station point of view and propose new architecture which meets the inherent requirements of SDR platform. We then introduce hardware/software of SDR platform we accomplished on the basis of the new architecture. In addition, the results of basic transmission and receiving performance are presented to prove the feasibility of the proposed platform as a base station.

  • Development of MIMO-SDR Platform and Its Application to Real-Time Channel Measurements

    Kei MIZUTANI  Kei SAKAGUCHI  Jun-ichi TAKADA  Kiyomichi ARAKI  

     
    PAPER

      Page(s):
    3197-3207

    A multiple-input multiple-output software defined radio (MIMO-SDR) platform was developed for implementation of MIMO transmission and propagation measurement systems. This platform consists of multiple functional boards for baseband (BB) digital signal processing and frequency conversion of 5 GHz-band radio frequency (RF) signals. The BB boards have capability of arbitrary system implementation by rewriting software on reconfigurable devices such as field programmable gate arrays (FPGAs) and digital signal processors (DSPs). The MIMO-SDR platform employs hybrid implementation architecture by taking advantages of FPGA, DSP, and CPU, where functional blocks with the needs for real-time processing are implemented on the FPGAs/DSPs, and other blocks are processed off-line on the CPU. In order to realize the hybrid implementation, driver software was developed as an application program interface (API) of the MIMO-SDR platform. In this paper, hardware architecture of the developed MIMO-SDR platform and its software implementation architecture are explained. As an application example, implementation of a real-time MIMO channel measurement system and initial measurement results are presented.

  • A Notebook PC Based Real-Time Software Radio DAB Receiver

    Shu-Ming TSENG  Yao-Teng HSU  Meng-Chou CHANG  Hsiao-Lung CHAN  

     
    PAPER

      Page(s):
    3208-3214

    To improve Digital Audio Broadcasting (DAB) receiver performance, we need to use better signal processing algorithm. However, it is impossible to modify the signal processing algorithm in DAB commercial hardware. In addition, the notebook PC based software radio research platform allows convenient acquisition of the massive radio data at variant environments and online analysis with variable signal processing procedure more easily. We have developed the first prototype portable software radio research platform for DAB which consists of a USB RF receiver module, USB interface and PC based software for device controlling and signal processing. Iterative decoding and ICI cancellation are also added to improve the performance in mobile channels.

  • Joint Hardware-Software Implementation of Adaptive Array Antenna for ISDB-T Reception

    Dang Hai PHAM  Takanobu TABATA  Hirokazu ASATO  Satoshi HORI  Tomohisa WADA  

     
    PAPER

      Page(s):
    3215-3224

    In this paper, an adaptive array antenna is implemented to enhance the performance of digital TV ISDB-T reception. Issues of realizing the proposed array antenna and its implementation by a joint hardware-software solution are also presented in this paper. Instead of using known reference signals, the proposed method utilizes the GI (Guard Interval) and a periodic property of OFDM signal as a constraint to realize MRC (Maximum Ratio Combining) and SMI (Sample Matrix Inversion) adaptive beam-forming algorithms. Experimental results show that the proposed system drastically improves the quality of reception. Moreover, the proposed system can achieve excellent performance under the conditions of strong interferences.

  • Implementation of Multi-Channel Modem for DSRC System on Signal Processing Platform for Software Defined Radio

    Akihisa YOKOYAMA  Hiroshi HARADA  

     
    PAPER

      Page(s):
    3225-3232

    We previously proposed an architecture for software defined radio called the reconfigurable packet routing-oriented signal processing platform (RPPP). This architecture was suited to wireless signal processing applications, which require radio functions to be selected in real time depending on the transmitted signal. A number of radio standards are used in DSRC systems for vehicle communication and vehicle equipment is required to transmit and receive the radio signals used on each particular occasion. An implementation of RPPP is described in this paper that enables the dynamic handling of two ARIB standards for DSRC. After an explanation of the basic architecture and an analysis of RPPP, the implementation of a reconfigurable DSRC transceiver for ASK and π/4 shift-QPSK is described. The implementation is then discussed, evaluated in terms of the number of logic units needed. We concluded that our platform is 27.6% more efficient in utilizing logic than that achieved with fixed design.

  • FPGA Implementation of Eigenbeam MIMO-OFDM for Wireless LAN and Its Experimental Performance

    Takeshi ONIZAWA  Atsushi OHTA  Yusuke ASAI  Satoru AIKAWA  

     
    PAPER

      Page(s):
    3233-3241

    This paper describes the experimental performance of eigenbeam multi-input multi-output with orthogonal frequency division multiplexing (MIMO-OFDM) systems as measured in a testbed implemented with field programmable gate arrays (FPGAs). The FPGA-testbed, characterized by the software-defined radio (SDR) technique, offers 1/5-scale real time signal processing. Extensive experiments on the testbed confirm the basic operation and performance of eigenbeam MIMO-OFDM with quadrature phase-shift keying (QPSK) and 16 quadrature amplitude modulation (QAM). From the packet error rate (PER) performance, we confirm that the eigenbeam 16QAM/MIMO-OFDM scheme with permutation matrix and three transmit antennas (Mt=3) drastically improves the required carrier-to-noise power ratio (CNR) by approximately 5.6 dB over the scheme without eigenbeam with Mt=2. Furthermore, to determine the impact of Doppler frequency fd, we focus on the transmission interval between the MIMO channel estimation and data transmission. To suppress the required CNR degradation to within 1.5 dB, it is found that the eigenbeam 16QAM/MIMO-OFDM scheme with permutation matrix and Mt=3 permits a transmission interval of approximately 68.5 ms when fd=1 Hz for a 1/5-scale model.

  • Reconfigurable Inner Product Hardware Architecture for Increased Hardware Utilization in SDR Systems

    Kwangsup SO  Jinsang KIM  Won-Kyung CHO  Young-Soo KIM  Doug Young SUH  

     
    PAPER

      Page(s):
    3242-3249

    Most digital signal processing (DSP) algorithms for multimedia and communication applications require multiplication and addition operations. Especially matrix-matrix or matrix-vector the multiplications frequently used in DSP implementations needs inner product arithmetic which takes the most processing time. Also multiplications for the DSP algorithms for software defined radio (SDR) applications require different input bitwidths. Therefore, the multiplications for inner product need to be sufficiently flexible in terms of bitwidths to utilize hardware resources efficiently. This paper proposes a novel reconfigurable inner product architecture based on a pipelined adder array, which offers increased flexibility in bitwidths of input arrays. The proposed architecture consists of sixteen 44 multipliers and a pipelined adder array and can compute the inner product of input arrays with any combination of multiples of 4 bitwidths such as 44, 48, 412, ... 1616. Experimental results show that the proposed architecture has latency of maximum 9 clock cycles and throughput of 1 clock cycle for inner product of various bitwidths of input arrays. When TSMC 0.18 µm libraries are used, the chip area and critical path of the proposed architecture are 186,411 gates and 2.79 ns, respectively. The proposed architecture can be applied to a reconfigurable arithmetic engine for real-time SDR system designs.

  • Influence of ADC Nonlinearity on the Performance of an OFDM Receiver

    Manabu SAWADA  Hiraku OKADA  Takaya YAMAZATO  Masaaki KATAYAMA  

     
    PAPER

      Page(s):
    3250-3256

    This paper discusses the influence of the nonlinearity of analog-to-digital converters (ADCs) on the performance of orthogonal frequency division multiplexing (OFDM) receivers. We evaluate signal constellations and bit error rate performances while considering quantization errors and clippings. The optimum range for an ADC input amplitude is found as a result of the trade-off between quantization error and the effects of clipping. In addition, it is shown that the peak-to-average power ratio (PAPR) of the signal is not a good measure of the bit error rate (BER) performance, since the largest peaks occur only with very low probabilities. The relationship between the location of a subcarrier and its performance is studied. As a result, it is shown that the influence of the quantization error is identical for all subcarriers, while the effects of clipping depend on the subcarrier frequency. When clipping occurs, the BER performance of a subcarrier near the center frequency is worse than that near the edges.

  • Accurate Source Number Detection Using Pre-Estimated Signal Subspace

    Yoshihisa ISHIKAWA  Koichi ICHIGE  Hiroyuki ARAI  

     
    PAPER

      Page(s):
    3257-3265

    This paper presents a scheme for accurately detecting the number of incident waves arriving at array antennas. The array antenna and MIMO techniques are developing as 4th generation mobile communication systems and wireless LAN technologies, and the accurate estimation of the propagation environment is becoming more important. This paper emphasizes the accurate detection of the number of incident waves; one of the important characteristics in multidirectional communication. There are some recent papers on accurate detection but they have problems of estimation accuracy or computational cost in severe environment like low SNR, small number of snapshots or waves with close angles. Hence, AIC and MDL methods based on statistics and information theory are still often used. In this paper, we propose an accurate estimation method of the number of arrival signals using the orthogonality of subspaces derived from preliminary estimation of signal subspace. The proposed method accurately estimates the number of signals also in severe environments where AIC and MDL methods can hardly estimate. We evaluate the performance of these methods through some computer simulation and experiments in anechoic chamber.

  • An Efficient Signed-Power-of-Two Term Allocation for Filter Coefficients in Digital Communication System Open Access

    Koichi ICHIGE  Hideaki MUNEMASA  Hiroyuki ARAI  

     
    LETTER

      Page(s):
    3266-3268

    This letter presents an efficient Signed-Power-of-Two (SPT) term allocation for filter coefficients in order to improve the BER characteristics of digital communication systems. The performance of the present allocation is evaluated by BER characteristics through digital modulation simulations and FPGA-based digital implementation.

  • Evolutional Algorithm Based Learning of Time Varying Multipath Fading Channels for Software Defined Radio

    Gagik MKRTCHYAN  Katsuhiro NAITO  Kazuo MORI  Hideo KOBAYASHI  

     
    LETTER

      Page(s):
    3269-3273

    Software defined radio, which uses reconfigurable signal processing devices, requires the determination of multiple unknown parameters to realize the potential capabilities of adaptive communication. Evolutional algorithms are optimal multi dimensional search techniques, and are well known to be effective for parameter determination. This letter proposes an evolutional algorithm for learning the mobile time-varying channel parameters without any specific assumption of scattering distribution. The proposed method is very simple to realize, but can provide precise channel estimation results. Simulations of an OFDM system show that for an example of OFDM communication under the time-varying fading channel, the proposed learning method can achieve the better BER performance.

  • Regular Section
  • Ordered Statistics Based Rate Allocation Scheme for Closed Loop MIMO-OFDM System

    Le ZHANG  Xiang HE  Hanwen LUO  Xiaoying GAN  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    3274-3279

    A new approach to low-complexity rate allocation scheme in closed loop MIMO-OFDM system is proposed. The new scheme utilizes ordered statistics of channel matrix's singular values to simplify the ideal scheme which uses water filling in both frequency and space domain. Unlike the conventional simplified algorithm called FFC [1] ("frequency flat constraint"), the proposed scheme has no restrictions of the numbers of antennas. The improvement of SNR gain with this new scheme is about 0.8 dB in 2-antenna systems with a little more complexity than FFC.

  • Optimal Encoding of Binary Cyclic Codes

    Houshou CHEN  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    3280-3287

    This paper considers the optimal generator matrices of a given binary cyclic code over a binary symmetric channel with crossover probability p→0 when the goal is to minimize the probability of an information bit error. A given code has many encoder realizations and the information bit error probability is a function of this realization. Our goal here is to seek the optimal realization of encoding functions by taking advantage of the structure of the codes, and to derive the probability of information bit error when possible. We derive some sufficient conditions for a binary cyclic code to have systematic optimal generator matrices under bounded distance decoding and determine many cyclic codes with such properties. We also present some binary cyclic codes whose optimal generator matrices are non-systematic under complete decoding.

  • High-Precision AFC Circuit Applied to 64QAM Point-to-Multipoint Burst Communications

    Yushi SHIRATO  Kazuji WATANABE  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    3288-3295

    In this paper, we propose a novel open-loop Automatic Frequency Control (AFC) circuit suitable for 64QAM point-to-multipoint (P-MP) burst communications. The proposed AFC contains two frequency offset detectors. One estimates the phase rotation over long intervals to obtain accurate estimates at the cost of phase ambiguity. The other estimates the phase rotation over short intervals and its output is used to resolve the ambiguity in the following phase ambiguity compensator. Thus, the proposed AFC circuit calculates the phase rotation over sufficiently long periods to yield accurately estimate the carrier frequency offset while suppressing the phase-unwrapping problem. The proposed AFC approaches the Cramer-Rao bound (CRB) and so achieves very small residual frequency offset. The proposed AFC circuit can be implemented with much smaller circuit scale than the conventional devices. Computer simulations and experiments confirm that its residual frequency error is less than of 10-5 for the frame format considered; this performance is sufficient for the 64QAM -40 Mbaud system targeted.

  • Modified NOLM for Stable and Improved 2R Operation at Ultra-High Bit Rates

    Shin ARAHIRA  Hitoshi MURAI  Yoh OGAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Page(s):
    3296-3305

    A nonlinear optical fiber loop mirror (NOLM) adapted for all-optical 2R operation at ultrahigh bit-rates was experimentally and theoretically investigated. The proposed NOLM was created by adding inline/external fiber polarizers and also an inline optical phase-bias compensator (OPBC) to a standard NOLM. A theoretical investigation revealed that the operation of the standard NOLM became unstable due to residual polarization crosstalk of the polarization-maintaining optical components making up the NOLM, and that it could be dramatically improved with the inline/external polarizers. The NOLM with the polarizers ensured stable switching operation with high switching-dynamic-range (>30 dB) against the change of the wavelength of the input clock pulses, and the change of the environment temperature. We also experimentally verified that the OPBC played a dramatic role to ensure excellent dynamic switching performance of the NOLM, and to achieve signal-Q-recovery of the regenerated signals. All optical 2R experiments at 40 Gb/s and 160 Gb/s were performed with the modified NOLM. Signal regeneration with improved extinction ratio and signal Q value was successfully demonstrated. Q-recovery to the input of the control pulses degraded with ASE noise accumulation was also successfully achieved.

  • Single Code-Based Dynamic Grouping with Cycle Interleaving Algorithm for Reducing Waste Rate in WCDMA Cellular Networks

    Ben-Jye CHANG  Min-Xiou CHEN  Ren-Hung HWANG  Kun-Chan TSAI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3306-3318

    3G must offer high data rates since it should support real-time multimedia services; one performance enhancement, the use of the OVSF code tree, has adopted in 3G WCDMA networks. Unfortunately, this technique allows the link capacity to be set at the base rate times powers of two. This results in wasting bandwidth while the required rate is not powers of two of the basic rate. Several multi-code assignment mechanisms have been proposed to reduce the waste rate, but incur some drawbacks, including high complexity of handling multiple codes and increasing cost of using more rake combiners. Our solution is a dynamic grouping code assignment that allows any rate to be achieved with a single code for any possible rate of traffic. The dynamic grouping approach first forms several calls into a group. It then allocates a subtree to the group and dynamically shares the subtree codes based on time-sharing of slots within a group cycle time. The waste rate and code blocking is thus reduced significantly. Since transmission delay and jitter may occur in such a time-sharing approach, two schemes of cycle interleaving are proposed to minimize delay and jitter. Numerical results demonstrate that the proposed approach reduces the waste rate and increases the system utilization obviously, and the proposed cycle interleaving schemes minimizes delay and jitter significantly.

  • Fast Acquisition of PN Sequences in DS-CDMA Systems with Incoherent Demodulator

    Sergei BYCHENKOV  Vladimir MIKHAILOV  Kohichi SAKANIWA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3319-3334

    DS-CDMA systems employing long-period PN sequences are becoming a widespread standard of wireless communication systems. However, fast acquisition of long-period PN sequences at a low hardware cost is conventionally a difficult problem. This paper examines a recently proposed fast acquisition algorithm for a class of PN sequences, which includes m and GMW sequences as special cases, under conditions of unknown received RF phase and chip boundary timing. The result shows that under low input (chip) SNR and the required delay estimation accuracy of Tc/Δ, Δ=2,3,…, the mean acquisition time can be considerably reduced compared to other known representative acquisition schemes. Its fast acquisition capability is based on a decomposition of long PN sequences into a number of short ones and achieves a significantly reduced code phase uncertainty of acquisition at relatively small hardware cost, estimated as 2/3 of the equivalent parallel correlators system. It can be applied as a (part of) acquisition scheme of a DS-CDMA system instead of a slow sliding correlator or a costly matched filter schemes.

  • Frequency-Domain ICI Cancellation with MMSE Equalization for DS-CDMA Downlink

    Kazuaki TAKEDA  Koichi ISHIHARA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3335-3343

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can replace the conventional rake combining while offering significantly improved bit error rate (BER) performance for the downlink DS-CDMA in a frequency-selective fading channel. However, the presence of residual inter-chip-inference (ICI) after FDE produces orthogonality distortion among the spreading codes and the BER performance degrades as the level of multiplexing increases. In this paper, we propose a joint MMSE frequency-domain equalization (FDE) and ICI cancellation to improve the BER performance of the DS-CDMA downlink. In the proposed scheme, the residual ICI replica in the frequency-domain is generated and subtracted from each frequency component of the received signal after MMSE-FDE. The MMSE weight at each iteration is derived taking into account the residual ICI. The effect of the proposed ICI cancellation scheme is confirmed by computer simulation.

  • Iterative Frequency-Domain Soft Interference Cancellation for Multicode DS- and MC-CDMA Transmissions and Performance Comparison

    Koichi ISHIHARA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3344-3355

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can significantly improve the BER performance of DS- and MC-CDMA systems in a severe frequency-selective fading channel. However, since the frequency-distorted signal cannot be completely equalized, the residual inter-code interference (ICI) limits the BER performance improvement. 4G systems must support much higher variable rate data services. Orthogonal multicode transmission technique has flexibility in offering variable rate services. However, the BER performance degrades as the number of parallel codes increases. In this paper, we propose an iterative frequency-domain soft interference cancellation (IFDSIC) scheme for multicode DS- and MC-CDMA systems and their achievable BER performances are evaluated by computer simulation.

  • Exact and General Expression for the Error Probability of Arbitrary Two-Dimensional Signaling with I/Q Amplitude and Phase Unbalances

    Jaeyoon LEE  Dongweon YOON  Kwangmin HYUN  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3356-3362

    The I/Q unbalance which is generated by a non-ideal component is an inevitable physical phenomenon and leads to performance degradation when we implement a practical two-dimensional (2-D) modulation system. In this paper, we provide an exact and general expression involving the 2-D Gaussian Q-function for the SER/BER of arbitrary 2-D signaling with I/Q amplitude and phase unbalances over an additive white Gaussian noise (AWGN) channel by using the coordinate rotation and shifting technique. Through Monte Carlo simulations we verify our expression provided here for 16-star Quadrature Amplitude Modulation (QAM).

  • 2-Dimensional OVSF Spread/Chip-Interleaved CDMA

    Le LIU  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3363-3375

    Multiple-access interference (MAI) limits the bit error rate (BER) performance of CDMA uplink transmission. In this paper, we propose a generalized chip-interleaved CDMA with 2-dimensional (2D) spreading using orthogonal variable spreading factor (OVSF) codes to minimize the MAI effects and achieve the maximum available time- and frequency-domain diversity gains. We present the code assignment for 2D spreading to provide users with flexible multi-rate data transmission. A computer simulation shows that by the joint use of 2D OVSF spreading and chip-interleaving, MAI-free transmission is possible for the quasi-synchronous DS- or MC-CDMA uplink, and hence the single-user frequency-domain equalization based on the MMSE criterion can be applied for signal detection. The BER performance in a time- and frequency-selective fading multiuser channel is theoretically analyzed and evaluated by both numerical computation and computer simulation.

  • Rate-One Full-Diversity Quasi-Orthogonal STBCs with Low Decoding Complexity

    Minh-Tuan LE  Van-Su PHAM  Linh MAI  Giwan YOON  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3376-3385

    This paper presents a family of rate-one quasi-orthogonal space-time block codes (QO-STBCs) for any number of transmit antennas. Full diversity of the proposed QO-STBCs is achieved via the use of constellation rotation. When the number of transmit antennas is even, these codes are delay "optimal." This property along with the quasi-orthogonality one allows the codes to have low decoding complexity. Besides, by applying lookup tables into the detection methods presented in [1] and generalizing them, two low-complexity maximum-likelihood (ML) decoders for the proposed QO-STBCs and for other existing QO-STBCs, called PMLD and QMLD, are obtained. Simulation results are provided to verify the bit error rate (BER) performances and complexities of both the proposed QO-STBCs and the proposed decoders.

  • An Efficient Anti-Collision Method for Tag Identification in a RFID System

    Wen-Tzu CHEN  Guan-Hung LIN  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    3386-3392

    Radio frequency identification (RFID) technology is becoming increasingly attractive because of its high storage capacity and reprogrammability. There is a challenge to be overcome when a reader needs to read a number of tags within the reader's interrogation zone at the same time. In this paper, we present an anti-collision scheme in a RFID system. The scheme is based on the dynamic framed ALOHA protocol developed for radio networks. In our scheme, we propose two methods to estimate the number of tags. Simulation results indicate that the total number of time slots for reading all tags is about 4 times the number of tags that need to be read, including acknowledgement time slots. The main advantages of our scheme are the great performance of uplink throughput and its easy implementation for both readers and tags.

  • Experimental Investigation of Modulation Method for Visible-Light Communications

    Hidemitsu SUGIYAMA  Shinichiro HARUYAMA  Masao NAKAGAWA  

     
    PAPER-Optical Wireless Communications

      Page(s):
    3393-3400

    We have developed a new modulation method--inverted pulse position modulation (I-PPM) and subcarrier inverted pulse position modulation (SC-I-PPM)--that provides superior LED brightness for visible-light communications. In addition, the new modulation method SC-I-PPM is not affected by background light. In this paper, we investigated several modulation methods in details and set up a standard with which to evaluate the performance of modulation methods. Several modulation methods are subjected to experiments to clarify their performance. Experiments show that subcarrier modulation suppresses the influence of background light and that our new modulation best maintains LED brightest.

  • Simple Modeling of an Abdomen of Pregnant Women and Its Application to SAR Estimation

    Hiroki KAWAI  Koichi ITO  Masaharu TAKAHASHI  Kazuyuki SAITO  Takuya UEDA  Masayoshi SAITO  Hisao ITO  Hisao OSADA  Yoshio KOYANAGI  Koichi OGAWA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Page(s):
    3401-3410

    This paper presents a simple abdomen model of pregnant women and the evaluation of the specific absorption rate (SAR) inside the proposed model close to normal mode helical antennas (NHAs), which are replacing the portable radio terminals for business at 150 MHz. First, dielectric properties of amniotic fluid and those of fetus of rabbit, which have about the same electrical properties as human, are measured. As a result, the conductivity of amniotic fluid is 1.8 times and that of fetus is 1.3 times higher than that of adult muscle at 150 MHz. The result also suggests the modeling of pregnant women including the amniotic fluid and the fetus is necessary. Next, a simple abdomen model of pregnant women based on the measurements of magnetic resonance (MR) images of Japanese women in the late period of pregnancy is proposed. Finally, the SAR inside the proposed abdomen model close to 0.11λ and 0.18λ NHAs is calculated using the finite-difference time-domain (FDTD) method. As a result, we have confirmed that the 10-g average SAR in the fetus is sufficiently less than 2 W/kg, when the output power of NHAs is 5 W, which is the maximum power of portable radio terminals in Japan.

  • Hybrid Analysis of Human Exposure from Base-Station Antennas in Underground Environment

    Jianqing WANG  Masayuki KOMATSU  Osamu FUJIWARA  Shinji UEBAYASHI  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Page(s):
    3411-3416

    In this study we have employed an effective technique for dosimetric analyses of base station antennas in an underground environment. The technique combines a ray-tracing method and the finite-difference time-domain (FDTD) method to calculate the specific absorption rate (SAR) in the human body. The ray-tracing method was applied to evaluate the incident fields in relation to the exposed subject in a three-dimensional space, while the FDTD method was used to calculate the detailed SAR distributions in the human body. A scenario under an underground passage with the installation of a top-loaded monopole antenna was analyzed to investigate the relationship between the actual antenna exposure and a plane-wave exposure. The results show that the plane-wave exposure overestimated the whole-body average SAR in most cases, although this was not always true for peak SAR. The finding implies not only the usefulness of the present uniform-exposure-based reference level for the whole-body average SAR evaluation but also the necessity of modeling actual underground environment for high-precision local peak SAR evaluation.

  • A Hierarchical Key Management Scheme for Authentication of Roaming Mobile Nodes between Domains in Mobile Networks

    Kihun HONG  Souhwan JUNG  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    3417-3420

    This letter proposes a hierarchical key management scheme based on hash key chain for authentication of roaming mobile nodes in both intra-domain and inter-domain. The key management scheme uses a local master key concept for reducing the latency of the authentication procedure and the communication overhead between a home authentication server and an access point in the foreign domain. The proposed scheme also supports secure separation of the authentication key among local authentication servers using hash key chain.

  • Sequence Set with Three Low Correlation Zones

    Xiaoming TAO  Chao ZHANG  Jianhua LU  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    3421-3424

    Sequence set with Three Zero Correlation Zones (T-ZCZ) is applied in Quasi-Synchronized CDMA communication system to reduce the Multiple Access Interference (MAI) and Inter Symbol Interference (ISI). In this letter, we present a class of sequence set with Three Low Correlation Zones (T-LCZ), which has more sequences and flexibility than T-ZCZ sequence set. Moreover, the theoretical bound on T-LCZ sequences is derived for estimating the performance of such sequence set.

  • Impersonation Attack on Two-Gene-Relation Password Authentication Protocol (2GR)

    Chun-Li LIN  Ching-Po HUNG  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    3425-3427

    In 2004, Tsuji and Shimizu proposed a one-time password authentication protocol, named 2GR (Two-Gene-Relation password authentication protocol). The design goal of the 2GR protocol is to eliminate the stolen-verifier attack on SAS-2 (Simple And Secure password authentication protocol, ver.2) and the theft attack on ROSI (RObust and SImple password authentication protocol). Tsuji and Shimizu claimed that in the 2GR an attacker who has stolen the verifiers from the server cannot impersonate a legitimate user. This paper, however, will point out that the 2GR protocol is still vulnerable to an impersonation attack, in which any attacker can, without stealing the verifiers, masquerade as a legitimate user.

  • Ti-Diffused Optical Waveguide with Thin LiNbO3 Structure for High-Speed and Low-Drive-Voltage Modulator

    Jungo KONDO  Kenji AOKI  Tetsuya EJIRI  Yuichi IWATA  Akira HAMAJIMA  Osamu MITOMI  Makoto MINAKATA  

     
    LETTER-Devices/Circuits for Communications

      Page(s):
    3428-3429

    We examined a Ti-diffused optical waveguide formed on a thin X-cut LiNbO3 substrate for a lower-drive-voltage modulator. Under the single-mode condition, optical mode-size decreases with LiNbO3 substrate thickness below 10 µm. A thin-sheet LiNbO3 modulator could achieve a low-drive-voltage of 1.3 V with a bandwidth of 15 GHz by adopting a narrow electrode-gap.

  • GI-Based Estimation of Integer Carrier Offset for Multicarrier Transmission Systems

    Eu-Suk SHIM  Hyoung-Kyu SONG  Young-Hwan YOU  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    3430-3432

    In this letter, we focus on non-pilot-symbol assisted integer frequency offset estimation for multicarrier orthogonal frequency division multiplexing (OFDM) systems. We introduce a frequency offset estimator that is based on the guard interval (GI) present in OFDM signals. We show by simulation that the frequency offset estimator can accurately estimate the frequency misalignment at the sacrifice of limited estimation range.

  • A Radio Synchronization Technique for Asynchronous Broadband Networks

    Sungho JEON  Sanghoon LEE  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    3433-3437

    A radio synchronization technique that dispenses with GPS (Global Positioning System) for OFDM (Orthogonal Frequency Division Multiplexing)-based broadband networks is described. UMTS (Universal Mobile Telecommunications System) employs three main mechanisms, a node, transport channel and radio interface synchronization. The RNC (Radio Network Controller) is used as a key network component for the centralized synchronization mechanism. Here, we explore a more accurate and simpler asynchronous technique for broadband networks from the perspective of a distributed manner, where MSs (Mobile Stations) play an important role in timing adjustment. Propagation delay and the hierarchical synchronization mechanism are taken into account in the mathematical analysis.

  • Intermittent Wireless Communication System for Low-Power Sensor Networks

    Akira MAEKI  Masayuki MIYAZAKI  Minoru OHGUSHI  Masaru KOKUBO  Kei SUZUKI  

     
    LETTER-Network

      Page(s):
    3438-3441

    An intermittent wireless communication system has been developed for low-power sensor networks that improves sensor network efficiency by promoting cooperative optimization among the hardware architecture, communication protocol, and multiple access scheme. The intermittent communication protocol together with hardware for intermittent function contributed to reduce power consumption and extended sensor-node battery lifetime. A multiple access scheme based on the R-ALOHA protocol is used for the wireless link; it works efficiently with the protocol and hardware. Due to its inter-layer optimization, the system has low power consumption regardless of the traffic load and is thus flexible enough to support a wide range of sensor network applications.

  • Modelling Real-Time Flow Connections in Wireless Mobile Internet

    Bongkyo MOON  

     
    LETTER-Network

      Page(s):
    3442-3445

    In this letter, an analytic model for real-time flow connections in a Wireless Mobile Internet (WMI) is developed, and then performance measures are derived. Some examples are also presented in order to show the call-blocking ratio and the number of connections admitted into a WMI.

  • Construction of a Fault-Tolerant Object Group Framework and Its Execution Analysis Using Home-Network Simulations

    Myungseok KANG  Jaeyun JUNG  Hagbae KIM  

     
    LETTER-Network Management/Operation

      Page(s):
    3446-3449

    We propose a Fault-Tolerant Object Group framework that provides group management and fault-tolerance services for consistency maintenance and state transparency as well. Through a virtual home-network simulation, we validate that the FTOG framework supports both of the reliability and the stability of the distributed home-network systems.

  • Capacity of VoIP over HSDPA with Frame Bundling

    Yong-Seok KIM  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3450-3453

    In this letter, we evaluate the capacity of voice over internet protocol (VoIP) services over high-speed downlink packet access (HSDPA), in which frame-bundling (FB) is incorporated to reduce the effect of relatively large headers in the IP/UDP/RTP layers. Also, a modified proportional pair (PF) packet scheduler design supporting for VoIP service is provided. The main focus of this work is the effect of FB on system outage based on delay budget in radio access networks. Simulation results show that VoIP system performance with FB scheme is highly sensitive to delay budget. We also conclude that HSDPA is attractive for transmission of VoIP if compared to the circuit switched (CS) voice that is used in WCDMA (Release'99).

  • Preamble Boosted Power Based Frame Timing Acquisition Algorithm for Cellular OFDMA Systems

    Seungjae BAHNG  Chang-Wahn YU  Youn-Ok PARK  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3454-3457

    We propose a simple initial frame timing acquisition algorithm for cellular OFDMA systems. The proposed algorithm utilizes the 9 dB boost in preamble power set by the IEEE 802.16e standard. Simulation results show that the proposed algorithm succeeds in acquiring the starting point of a frame under not only single cell but also multi-cell environments, while the conventional autocorrelation-based method fails under multi-cell environment.

  • Channel Estimation in Comb-Type Pilot Arrangements for OFDM Systems with Null Subcarriers

    Jihyung KIM  Sangho NAM  Daesik HONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3458-3462

    This letter analyzes the degradation effect of null subcarriers in orthogonal frequency domain multiplexing (OFDM) systems on the time-domain maximum likelihood (ML) estimation performance. The analysis is used as the basis for a proposal for a channel estimation method that can overcome performance degradation caused by null subcarriers. The accuracy of the proposed method is confirmed by the numerical analysis.

  • Novel Blind Adaptive Equalization over Doubly-Selective Fading Channels

    Mi-Kyung OH  Yeong-Hyeon KWON  Dong-Jo PARK  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3463-3466

    A new receiver structure that combines the constant modulus algorithm (CMA) and the Kalman filter (KF) is investigated to exploit the advantages of both algorithms; simple implementation of blind algorithms, and excellent tracking ability, respectively. The proposed scheme achieves faster convergence and adaptability to the channel variation, which is verified through comparative simulations in doubly-selective (time- and frequency-selective) fading channels.

  • Performance of Selection MIMO Systems with Generalized Selection Criterion over Nakagami-m Fading Channels

    Seyeong CHOI  Young-Chai KO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3467-3470

    We investigate selection transmit multi-input multi-output systems where only a single transmit antenna is selected for the transmission and multiple receive antennas are employed for maximal ratio combining. Antenna selection is performed by a generalized selection criterion based on the ordinal number of the strength of the received signal-to-noise ratio.

  • Filter Effect on Low-IF Multichannel Receiver: How a Simple Filter Improves Digital Communication Quality

    Nozomi ZAMA  Koichi ICHIGE  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3471-3474

    This letter presents an efficient multichannel low-IF reception scheme that improves digital communication quality in the sense of BER performance. Created by simply adding cosine rolloff filters to the conventional multichannel receiver, the proposed receiver achieves much higher accuracy than the conventional one.

  • Iterative Decision Feedback Channel Estimation Using Metrics Comparison for Burst Mode COFDM Transmission

    Haruhito YOSHIDA  Fumiaki MAEHARA  Fumio TAKAHATA  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    3475-3478

    This letter presents an iterative decision feedback channel estimation scheme for burst mode COFDM transmission. The feature of the proposed scheme is that the channel estimation using metrics comparison is applied to the initial stage of the iterative mechanism, which makes it possible to provide a reliable data stream at the initial stage. Computer simulation results show that the proposed approach provides better BER than the traditional iterative decision feedback channel estimation scheme irrespective of the number of iterations.

  • Reverse Link Capacity Analysis over Multi-Cell Environments

    Sungjin LEE  Sanghoon LEE  

     
    LETTER-Terrestrial Radio Communications

      Page(s):
    3479-3482

    This paper presents a numerical analysis of reverse link capacity by obtaining a closed form of ICI (InterCell Interference) over OFDM (Orthogonal Frequency Division Multiplexing)-based broadband wireless networks. In the analysis, shadowing factors are taken into account for determining the home BS (Base Station) of each MS (Mobile Station) over multicell environments. Under the consideration, a more accurate analysis of link capacity can be performed compared to Gilhousen's approximation. In the numerical results, it turns out that the actual interference is lower than Gilhousen's approximation with a decrease of around 20% in the interference.

  • Impact of Shadowing Correlation on Reverse Link Capacity of DS-CDMA Cellular System

    Arif JUNAIDI  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER-Terrestrial Radio Communications

      Page(s):
    3483-3486

    Independent shadowing losses are often assumed for evaluating the link capacity of direct sequence code division multiple access (DS-CDMA) cellular system. However, shadowing losses may be partially correlated since the obstacles surrounding a mobile station block similarly the desired signal and the interfering signals. In this letter, we discuss how the shadowing correlation impacts the reverse link capacity of a power-controlled DS-CDMA cellular system, by numerical analysis.

  • An Efficient Time-Domain Electromagnetic Solution Using the Time-Domain Variable Resolution Concept

    Hyung-Hoon KIM  Saehoon JU  Seungwon CHOI  Jong-Il PARK  Hyeongdong KIM  

     
    LETTER-Antennas and Propagation

      Page(s):
    3487-3490

    To make the best use of the known characteristics of the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method such as unconditional stability and modeling accuracy, an efficient time domain solution with variable time-step size is proposed. Numerical results show that a time-step size for a given mesh size can be increased preserving a desired numerical accuracy over frequencies of interest.

  • Compact Representation of Green Function Using Discrete Wavelet Concept for Fast Field Analysis

    Hyung-Hoon KIM  Saehoon JU  Seungwon CHOI  Jong-Il PARK  Hyeongdong KIM  

     
    LETTER-Antennas and Propagation

      Page(s):
    3491-3493

    A compact representation of the Green function is proposed by applying the discrete wavelet concept in the k-domain, which can be used for the acceleration of scattered field calculations in integral equation methods. A mathematical expression of the Green function based on the discrete wavelet concept is derived and its characteristics are discussed.

  • Rate-Distortion Optimized Selection of Motion Vectors for Video Transmission over Packet-Loss Channels

    Jing YANG  Xiangzhong FANG  

     
    LETTER-Multimedia Systems for Communications

      Page(s):
    3494-3496

    The selection of motion vectors plays an important role in the error propagation process between inter-frames. In this letter, an end-to-end prediction error calculation method is proposed and is used for the rate-distortion optimized selection of motion vectors. Simulation results show that the robustness of encoded video streams under error-prone environment is improved.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.