IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.73

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E95-B No.1  (Publication Date:2012/01/01)

    Special Section on Recent Progress in Antennas and Propagation in Conjunction with Main Topics of ISAP2010
  • FOREWORD Open Access

    Wai Wa CHOI  

     
    FOREWORD

      Page(s):
    1-1
  • Performance Analysis of Energy Pattern and Power Patterns for UWB Antenna and Narrowband Antenna Open Access

    Dau-Chyrh CHANG  Chao-Hsiang LIAO  Powen HSU  

     
    INVITED PAPER

      Page(s):
    2-9

    Power patterns in the frequency domain are usually used to describe the antenna performance in narrowband communication systems; however, they are not sufficient for ultra wideband (UWB) antennas in wideband communication systems. In this paper, energy pattern and energy gain are introduced to describe the performance of UWB antennas. Numerical simulations and measurements are used to demonstrate the difference between power patterns and energy patterns for narrowband Yagi-Uda antenna, UWB CPW–fed bow-tie slot antenna, and UWB comb taper slot antenna. The results of simulations and measurements are agreement not only in energy pattern, but also in received voltage at various observation angles. For narrowband antennas, the energy patterns are similar to that of the power patterns in the main beam region. However, there are quite differences between power pattern in frequency domain and energy pattern in time domain for UWB antennas.

  • Design of MIMO Antennas for Indoor Base Station and Mobile Terminal Open Access

    Hiroyuki ARAI  Daisuke UCHIDA  

     
    INVITED PAPER

      Page(s):
    10-17

    Two design parameters, SNR and correlation, are key factors for enhancing channel capacity in MIMO systems. Achieving high SNR and low correlation is desirable in antenna design. This paper discusses the relation between channel capacity and these two parameters, and presents simple formulas of this relation for propagation channels and antenna coupling of mobile terminals. According to these guidelines, indoor base station antennas are designed and examined using propagation measurements. We also present a suitable antenna design for mobile terminal antennas and based on a realistic propagation model, predicted the channel capacity of the antenna.

  • A Simple Broadband Antenna for MIMO Applications in Cognitive Radio

    Dinh Thanh LE  Yoshio KARASAWA  

     
    PAPER-Antennas

      Page(s):
    18-26

    In this paper, a simple type of printed dipole is proposed for Multi-Input Multi-Output (MIMO) applications in cognitive radio. The antenna is composed of a transmission line and a dipole. Some examinations of key factors and optimized parameters of the antenna are presented. The measured results illustrate that the proposed antenna offers a bandwidth of over 50% for Voltage Standing Wave Ratio (VSWR) less than 2, extending from 2.4 GHz to 4.0 GHz. The antenna peak gain in E-plane and radiation patterns at different frequencies are also explored. In addition, based on the proposed antenna, we introduce two simple broadband arrays for MIMO applications in cognitive radio. One has two ports and the other has four ports. Measurement results indicate that the arrays also work in a broad bandwidth. Mutual couplings between ports in each array are kept under -10 dB at the low frequencies and under -20 dB at the high frequencies of bandwidth of the arrays. Furthermore, we utilized the antenna arrays for some MIMO experiments to estimate the channel capacity in a wide frequency range.

  • A Multiband Monopole Antenna with Modified Fractal Loop Parasitic for DCS 1800, WLAN, WiMAX and IMT Advanced Systems

    Chatree MAHATTHANAJATUPHAT  Norakamon WONGSIN  Prayoot AKKARAEKTHALIN  

     
    PAPER-Antennas

      Page(s):
    27-33

    A multiband monopole antenna with modified fractal loop parasitic is presented. Especially, bow-tie stubs and a modified fractal loop are attached to the sides and bottom of a strip line monopole antenna, respectively, in order to generate the multi-resonant frequencies for the applications of wireless communication systems. The characteristics of the presented antenna have been examined by using the simulation software. The comparison between the simulated and measured results confirms the good agreement. The results show good multiband operation with 10 dB impedance bandwidths of 15.55%, 8.75%, and 31.94% at the resonant frequencies of 1.8 GHz, 2.4 GHz, and 3.6 GHz, respectively, which cover the operating band applications of DCS 1800, WLAN (IEEE802.11 b/g), WiMAX, and IMT advanced system (4G mobile communication system).

  • Millimeter-Wave Microstrip-Line-Fed Broadband Waveguide Aperture Antennas

    Shintaro YANO  Kunio SAKAKIBARA  Nobuyoshi KIKUMA  Hiroshi HIRAYAMA  

     
    PAPER-Antennas

      Page(s):
    34-40

    Microstrip-line-fed broadband aperture antennas were developed in the millimeter-wave band. We have developed broadband microstrip-to-waveguide transitions to connect a microstrip line and a waveguide. The waveguide transmission line was replaced by a radiating waveguide with an aperture to compose a microstrip-line-fed aperture antenna. Two types of aperture antennas were developed. First, the microstrip substrate is fixed between the two metal plates of a waveguide with an aperture and a back-short waveguide. Second, both the microstrip feeding-line and the back-short waveguide are accommodated in the two-layer LTCC substrate. Broadband performance was achieved due to the potential of the transition. The characteristics of the developed antennas were evaluated by simulations and experiments in the millimeter-wave band.

  • Broadband Millimeter-Wave Microstrip Comb-Line Antenna Using Corporate Feeding System with Center-Connecting

    Atsushi KUNITA  Kunio SAKAKIBARA  Kazuyuki SEO  Nobuyoshi KIKUMA  Hiroshi HIRAYAMA  

     
    PAPER-Antennas

      Page(s):
    41-50

    A broadband microstrip comb-line antenna using a corporate feeding system was developed. The antenna was composed of four colinearly-arranged comb-line antennas with traveling-wave excitation fed by a parallel-feeding circuit of tournament configuration. The total phase deviation due to frequency change became one fourth of the ordinary series feeding from the end of the antenna. Furthermore, the terminations of the inner two comb-lines were connected at the overall center of the developed antenna. Therefore, the narrowband matching elements are not necessary and the amplitude deviation of the aperture distribution for input from one side due to frequency change is compensated by deviation for input from the other side. Broad bandwidth can be expected by using the proposed configuration. The proposed antenna was designed at 76.5 GHz. The effect of the proposed feeding-circuit for broadband operation was confirmed by comparing the measured performances of the antennas fed by other feeding circuits; the end feeding, the center feeding and the ordinary corporate feeding. The bandwidth of the proposed corporate feeding antenna with the center connecting was approximately 14% and 7% wider than the antennas of the center feeding and of the ordinary corporate feeding, respectively.

  • Proper Derivation of Equivalent-Circuit Expressions of Intra-Body Communication Channels Using Quasi-Static Field

    Nozomi HAGA  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Antennas

      Page(s):
    51-59

    Physical channels of the intra-body communications, in which communications are performed by exciting electric field around the human body, have been treated as a capacitive circuit from the beginning of the development. Although the circuit-like understanding of the channels are helpful to design devices and systems, there is a problem that the results may be invalid if the circuit parameters are incorrectly estimated. In the present study, the values of the circuit parameters are properly derived by solving a boundary value problem of electric potentials of the conductors. Furthermore, approximate models which are appropriate for cases that some of the conductors are grounded are investigated.

  • SAR-Probe Calibration System Using Reference Dipole Antenna in Tissue-Equivalent Liquid

    Nozomu ISHII  Yukihiro MIYOTA  Ken-ichi SATO  Lira HAMADA  Soichi WATANABE  

     
    PAPER-Antenna Measurement

      Page(s):
    60-68

    The probe used in the conventional SAR measurement is usually calibrated in a well filled with tissue-equivalent liquid surrounded by a rectangular waveguide and a matching dielectric window in the frequency range from 800 MHz to 3 GHz. However, below 800 MHz, the waveguides are too large to be used for the calibration. Therefore, we have developed another technique of calibrating the SAR-probe, that is, relating the output voltage of the probe to the field intensity produced by a reference antenna in the tissue-equivalent liquid by using two-antenna method. In this paper, the calibration system using the reference dipole antennas in the liquid at 450 MHz, 900 MHz and 2450 MHz is presented and far-field gain of the reference antenna and calibration factor of the SAR-probe are measured and compared with those obtained by using the conventional waveguide system.

  • A Least Bit Error Rate Adaptive Array for MultiLevel Modulations

    Satoshi DENNO  Daisuke UMEHARA  Masahiro MORIKURA  

     
    PAPER-Radio Systems

      Page(s):
    69-76

    This paper proposes an adaptive algorithm for adaptive arrays that minimizes the bit error rate (BER) of the array output signals in radio communication systems with the use of multilevel modulation signals. In particular, amplitude phase shift keying (APSK) is used as one type of multilevel modulations in this paper. Simultaneous non-linear equations that are satisfied by the optimum weight vector of the proposed algorithm are derived and used for theoretical analyze of the performance of the adaptive array based on the proposed algorithm. As a result of the theoretical analysis, it can be shown that the proposed adaptive array improves the carrier to interference ratio of the array output signal without taking advantage of the nulls. Furthermore, it is confirmed that the result of the theoretical analysis agrees with that of computer simulation. When the number of the received antenna is less than that of the received signals, the adaptive array based on the proposed algorithm is verified to achieve much better performance then that based on the least mean square (LMS) algorithm.

  • An Approximation Method for Evaluating SIMO-OFDM MRC System in Multipath Environment Where Delay Profile Exceeds the Guard Interval

    Quoc-Anh VU  Changarkame VANMANY  Anmol BAJRACHARYA  Yoshio KARASAWA  

     
    PAPER-Radio Systems

      Page(s):
    77-86

    Equivalent Transmission Path (ETP) model-based BER map method was proved to be used in fast estimating Bit Error Rate (BER) of Single-Input Single-Output Orthogonal Frequency Division Multiplexing (SISO-OFDM) system, where the delay spreading exceeds the guard interval. In this paper, we propose a method for evaluating transmission characteristics of Single-Input Multiple-Output Orthogonal Frequency Division Multiplexing (SIMO-OFDM) system with application to maximum ratio combining diversity at the reception. The simulation results show that the proposed approximation method is able to be used in estimating trasmission characteristics with high accuracy not only for SISO-OFDM system but also for SIMO-OFDM system.

  • Effectiveness of Short-Range MIMO Using Dual-Polarized Antenna

    Ken HIRAGA  Tomohiro SEKI  Kentaro NISHIMORI  Kazuhiro UEHARA  

     
    PAPER-Radio Systems

      Page(s):
    87-96

    Short-range Multiple-Input-Multiple-Output (SR-MIMO) transmission is an effective technique for achieving high-speed and short-range wireless communication. With this technique, however, the optimum aperture size of array antennas grows when the transmission distance is increased. Thus, antenna miniaturization is an important issue in SR-MIMO. In this paper, we clarify the effectiveness of using dual-polarized planar antennas as a means of miniaturizing SR-MIMO array antennas by measurements and analysis of MIMO transmission characteristics. We found that even in SR-MIMO transmission, the use of dual-polarized transmission enables higher channel capacity. Dual-polarized antennas can reduce by two thirds the array area that is needed to obtain the same channel capacity. For a transmission distance of two wavelengths, the use of a dual-polarized antenna improved the channel capacity by 26 bit/s/Hz while maintaining the same number of transmitters and receivers and the same antenna aperture size. Moreover, dual-polarized SR-MIMO has a further benefit when zero-forcing (ZF) reception without transmit beamforming is adopted, i.e., it effectively simplifies hardware configuration because it can reduce spatial correlation even in narrow element spacing. In this work, we confirmed that the application of dual-polarization to SR-MIMO is an effective way to both increase channel capacity and enhance transceiver simplification.

  • Pre-Compensation Clutter Range-Dependence STAP Algorithm for Forward-Looking Airborne Radar Utilizing Knowledge-Aided Subspace Projection

    Teng LONG  Yongxu LIU  Xiaopeng YANG  

     
    PAPER-Radars

      Page(s):
    97-105

    The range-dependence of clutter spectrum for forward-looking airborne radar strongly affects the accuracy of the estimation of clutter covariance matrix at the range under test, which results in poor clutter suppression performance if the conventional space-time adaptive processing (STAP) algorithms were applied, especially in the short range cells. Therefore, a new STAP algorithm with clutter spectrum compensation by utilizing knowledge-aided subspace projection is proposed to suppress clutter for forward-looking airborne radar in this paper. In the proposed method, the clutter covariance matrix of the range under test is firstly constructed based on the prior knowledge of antenna array configuration, and then by decomposing the corresponding space-time covariance matrix to calculate the clutter subspace projection matrix which is applied to transform the secondary range samples so that the compensation of clutter spectrum for forward-looking airborne radar is accomplished. After that the conventional STAP algorithm can be applied to suppress clutter in the range under test. The proposed method is compared with the sample matrix inversion (SMI) and the Doppler Warping (DW) methods. The simulation results show that the proposed STAP method can effectively compensate the clutter spectrum and mitigate the range-dependence significantly.

  • Directivity Control by Asymmetrically Fed Dipole Antenna with PIN Diode Switches

    Yuuya HOSHINO  Akira SAITOU  Kazuhiko HONJO  

     
    LETTER-Antennas

      Page(s):
    106-108

    A feed-point-selective, asymmetrically fed dipole antenna has been proposed for multiple-input multiple-output (MIMO) applications. By using PIN diode switches, an asymmetrical antenna feed is realized so as to control antenna directivities. The two basic requirements for MIMO antenna radiation patterns, namely, a decrease in overlap and control in direction, have been achieved. Additionally, to enhance directivities for the antenna with PIN diodes, a reflector has been introduced. The gain toward the reflector decreased by 2 dB, while the gain in the direction of the maximum gain increased by 2 dB. The developed antenna can correspond to a variable power angular spectrum (PAS).

  • Small Wearable Antenna with Folded Ground for Body-Centric Wireless Communications

    Zhengyi LI  Kazuyuki SAITO  Masaharu TAKAHASHI  Koichi ITO  

     
    LETTER-Antennas

      Page(s):
    109-112

    The miniaturization of electronic devices is leading to the creation of body-centric wireless communications, in which wireless devices are attached to human body. However, the human body environment is often uninviting for wireless signals owing to the mutual influence between the human body and wireless devices' antennas, namely wearable antennas. Therefore, wearable antennas need to be carefully designed. In this paper, a small wearable antenna with folded ground at 2.4 GHz is proposed. The folded ground has two effects: one is to improve efficiency and the other is to enhance bandwidth. When the antenna is very close to human body, it has an efficiency of 50.7% and a wide operation bandwidth of 130 MHz.

  • Single Antenna Relay System Using De-Noise and Forward Scheme for MIMO Transmission

    Kosuke KINAMI  Naoki HONMA  Kentaro NISHIMORI  

     
    LETTER-Radio Systems

      Page(s):
    113-115

    This paper proposes single antenna relay system using De-noise and forward (DNF) scheme for MIMO transmission. In this scheme, the relay node eliminates the noise by identifying constellation, and retransmits after amplification. DNF does not amplify the noise, and the channel information is unnecessary in the transmitting side. In this paper, we propose the de-noising scheme for MIMO application. Particularly, DNF can be used for the multi-stream transmission even though each relay nodes have single antenna. The simulation demonstrates the proposed scheme can improve the data transmission quality than the conventional scheme.

  • Doppler Centroid Estimation for Space-Surface BiSAR

    Weiming TIAN  Jian YANG  Xiaopeng YANG  

     
    LETTER-Radars

      Page(s):
    116-119

    Phase synchronization is a crucial problem in Bistatic Synthetic Aperture Radar (BiSAR). As phase synchronization error and Doppler phase have nearly the same form, Doppler Centroid (DC) cannot be estimated with traditional method in BiSAR. A DC estimation method is proposed through phase-interferometry of Dual-channel direct signal. Through phase interferometry, phase synchronization error can be counteracted while Doppler phase is reserved and DC can be estimated from the reserved phase.

  • Regular Section
  • Analytical Model of the Single Threshold Mechanism with Hysteresis for Multi-Service Networks

    Maciej SOBIERAJ  Maciej STASIAK  Joanna WEISSENBERG  Piotr ZWIERZYKOWSKI  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    120-132

    This paper presents a new generalized single threshold model that can be used in communications and cellular networks. In the proposed model, called Single Hysteresis Model (SHM), it is assumed that the amount of resources accessible for a new call of a given class can depend on two load areas of the system. The switching between areas is modulated by the two-state Markov chain which determines the average time the system spends in a particular load area, i.e. the area in which calls of selected classes with a reduced amount of resources (high load area) and with the initial amount of resources (low load area) are serviced. The results obtained for the discussed analytical model are compared with the results of the simulation of an exemplary WCDMA radio interface carrying a mixture of different multi-rate traffic streams. The research study confirms high accuracy of the proposed model.

  • High Efficiency Control Method for the Hall Thruster System through Constant Flow Rate Control by Power Supply Control

    Hiroyuki OSUGA  Fujio KUROKAWA  Taichiro TAMIDA  Naoji YAMAMOTO  

     
    PAPER-Energy in Electronics Communications

      Page(s):
    133-142

    We present a new power supply control method, which achieves constant flow Rate control for the thrust of a 20 mN-class Hall thruster. First, we present observations of a 20 mN-class Hall thruster with oscillation-mode-map. We make a theoretical study of the thrust and experiments on electrical characteristics of the Hall thruster, and conclude that thrust, thrust efficiency and low frequency oscillation are clearly determined by the external control parameters, anode voltage, gas flow rate, and magnetic flux density. Second, we discuss how to control the power supplies to suppress the power consumption, especially when the operation or thruster conditions change temporarily during use. The new method will be a very important guideline for Hall thruster system design and operation, in particular making it easy to manage the power consumption in a satellite by controlling the thrust resources. As a result of performance experiments for a 20 mN-class Hall thruster, over 36% thrust efficiency of the Hall thruster was found to be sensitive to the anode voltage and applied magnetic flux density. The new power control method achieves constant flow rate control method of the thrust. The benefits are light weight and low cost.

  • Optical Fan-Out Adapter for Compact Packaging of Components by a Jacket Removing System with a CO2 Laser

    Osanori KOYAMA  Ryou SOUGEN  Keisuke IKUSHIMA  Makoto YAMADA  Yutaka KATSUYAMA  

     
    PAPER-Optical Fiber for Communications

      Page(s):
    143-151

    A new optical fan-out adapter is proposed and fabricated by applying the jacket removing system with a CO2 laser. The fan-out adapter has both the multi-fiber connection function and the fiber separating function for single-fiber connections. In order to remove the jacket of a fiber ribbon to connectorize and fabricate the fan-out adapter, the optimum conditions of the laser power P and the scan speed V are clarified for the jacket removing. Based on the optimum conditions, the fan-out adapter was fabricated successfully. Individual fibers could be taken out from the MT connector of the fan-out adapter. The connection losses of the fabricated fan-out adapter were comparable with the values of commercially available MT connectors and SC connectors. The length of the fabricated fan-out adapter was 27 mm, including 2 MT connectors. This result clarifies that the size of the connection with a fan-out can be reduced dramatically by the proposed fan-out adapter.

  • Interim CRC: A Novel Method to Read Large-Size Data from Tags in RFID Systems

    Xiaodong DENG  Mengtian RONG  Tao LIU  

     
    PAPER-Network

      Page(s):
    152-159

    Large capacity tags are becoming available to meet the demands of industry, but the UHF RFID protocol is unable to reliably and efficiently read large data sets from tags. First of all, large data sets are not well protected. The tag merely relies on 16-bit CRC for ensuring the validity of up to 4,096-bit user-specific data in EPCglobal C1G2 protocol. Furthermore, the reliability will be even worse if large capacity tags are implemented using semi-active technology which is likely to prevail among sensor-integrated RFID tags. Since semi-active tags greatly alleviate the performance limitation imposed by the turn-on power of the tag chip, backscattering signal of semi-active tags could be a serious challenge for most readers because it is much weaker than signals emitted by passive tags due to longer reading distance. In this paper, Interim CRC is presented to enhance transmission reliability and efficiency when the tag is backscattering a large data set. By taking advantage of Interim CRC, the large data set can be divided into several blocks, and 16-bit checksum is calculated over each block. The tag backscatters all blocks at the first time and only retransmits certain blocks if CRC error occurs in those blocks. The result of simulation shows that the reading error rate can be confined to a preset threshold and the accumulative total of transmitted data are greatly reduced if optimal block size and transmission times are complied with. The simulation also conclusively proves that semi-active tags derive even longer reading range from Interim CRC. In addition, Interim CRC is totally compliant with the EPCglobal C1G2 protocol. It fully makes use of CRC-16 encoder and does not involve any other data encoding schematics and hardware modifications.

  • QoS-Ensured Network Resource Federation Driven by Bandwidth Brokers in Open Access Network Architecture

    Michiaki HAYASHI  Nobutaka MATSUMOTO  Kosuke NISHIMURA  Hideaki TANAKA  

     
    PAPER-Network

      Page(s):
    160-168

    Various network services, such as virtual private network, cloud computing and Internet protocol television, are often provided across multiple network operators. The difficulty in managing the quality of service across multiple operator domains is the barrier to adoption especially to service level agreement-sensitive and mission critical cases. Federating network resources among operators is necessary to manage the quality of service across operators. To manage network resources of other operator domains, the network operator's federation mechanisms aiming at a future open access network model are essential. In this paper, the mechanisms of the signaling process as well as the capability of the bandwidth broker are proposed for open access networking, where multiple operators are connected via a common access network operator. Considering that both the next generation network and the non-next generation network architectures must coexist, we have analyzed federation mechanisms for establishing practical functional extensions to existing bandwidth broker implementations for the federation signaling. Based on the analysis, the designs of the federation signaling and the required bandwidth broker functional models are proposed. The proposed design is prototyped and the demonstration of the federation signaling shows that the federation mechanism can assure the bandwidth of a targeted live data stream on demand across the trunk and the access network operators even under a congested situation.

  • Passive Coding-Based Epidemic Routing in Sparsely Populated Mobile Ad hoc Networks

    Yasushi YAMAWAKI  Takahiro MATSUDA  Tetsuya TAKINE  

     
    PAPER-Network

      Page(s):
    169-177

    Epidemic Routing is a data delivery scheme based on the store-carry-forward routing paradigm for sparsely populated mobile ad hoc networks. In Epidemic Routing, each node copies packets in its buffer into any other node that comes within its communication range. Although Epidemic Routing has short delay performance, it causes excessive buffer space utilization at nodes because many packet copies are disseminated over the network. In this paper, aiming at efficient buffer usage, we propose an XOR-based delivery scheme for Epidemic Routing, where nodes encode packets by XORing them when their buffers are full. Note that existing delivery schemes with coding are active coding, where source nodes always encode packets before transmitting them. On the other hand, the proposed scheme is passive coding, where source nodes encode packets only when buffer overflow would occur. Therefore, the behavior of the proposed scheme depends on the buffer utilization. More specifically, if sufficient buffer space is available, the proposed scheme delivers packets by the same operation as Epidemic Routing. Otherwise, it avoids buffer overflow by encoding packets. Simulation experiments show that the proposed scheme improves the packet delivery ratio.

  • Divided Static Random Access Memory for Data Aggregation in Wireless Sensor Nodes

    Takashi MATSUDA  Shintaro IZUMI  Yasuharu SAKAI  Takashi TAKEUCHI  Hidehiro FUJIWARA  Hiroshi KAWAGUCHI  Chikara OHTA  Masahiko YOSHIMOTO  

     
    PAPER-Network

      Page(s):
    178-188

    One of the most challenging issues in wireless sensor networks is extension of the overall network lifetime. Data aggregation is one promising solution because it reduces the amount of network traffic by eliminating redundant data. In order to aggregate data, each sensor node must temporarily store received data, which requires a specific amount of memory. Most sensor nodes use static random access memory (SRAM) or flash memory for storage. SRAM can be implemented in a one-chip sensor node at low cost; however, SRAM requires standby energy, which consumes a lot of power, especially because the sensor node spends most of its time sleeping, i.e. its radio circuits are quiescent. This study proposes two types of divided SRAM: equal-size divided SRAM and equal-ratio divided SRAM. Simulations show that both proposed SRAM types offer reduced power consumption in various situations.

  • Configuring a Low-Cost, Power-Saving Multiple Server Backup System: Experimental Results

    Mitsuyoshi KITAMURA  

     
    PAPER-Network Management/Operation

      Page(s):
    189-197

    In this study, a low-cost, power-saving and reliable Multiple Server Backup System (MSBS) was configured and tested. The MSBS is based on a Dynamic Backup Server System (DBSS) and is able to recover many different server functions. To configure the DBSS, the mode segmentation method is introduced to simplify system control design and improve applicability to other systems. Experiments based on a mail server showed that the DBSS has sufficient ability to deal with various types of issues, including software and hardware failures. Furthermore, it is important to evaluate the virtual server performance in recovering target server functions. The well-known clock time inaccuracy problem of the virtual server is solved using the network access method regardless of the failure.

  • Uplink Capacity of OFDM Multi-User MIMO Using Near-ML Detection in a Cellular System

    Masashi ITAGAKI  Tetsuya YAMAMOTO  Kazuki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    198-205

    Multi-user multi-input multi-output (MIMO) system has been attracting much attention due to its high spectrum efficiency. Non-linear MIMO signal detection methods with less computational complexity have been widely studied for single-user MIMO systems. In this paper, we investigate how a lattice reduction (LR)-aided detection and a maximum likelihood detection (MLD) employing the QR decomposition and M-algorithm (QRM-MLD), which are commonly known as non-linear MIMO signal detection methods, improve the uplink capacity of a multi-user MIMO-OFDM cellular system, compared to simple linear detection methods such as zero-forcing detection (ZFD) and minimum mean square error detection (MMSED). We show that both LR-aided linear detection and QRM-MLD can achieve higher uplink capacity than simple linear detection at the cost of moderate increase of computational complexity. Furthermore, QRM-MLD can obtain the same uplink capacity as MLD.

  • Design and Optimization of a CDMA-Based Multi-Reader Passive UHF RFID System for Dense Scenarios

    Zhi ZHANG  Zhonghai LU  Qiang CHEN  Xiaolang YAN  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    206-216

    In dense passive radio frequency identification (RFID) systems, code division multiple access (CDMA) techniques can be used to alleviate severe collisions and thus enhance the system performance. However, conventional CDMA techniques are challenging to implement, especially for passive tags due to cost and power constraints. In this paper, we design a CDMA-based multi-reader passive ultra high frequency (UHF) RFID system in which a reader detects only the strongest tag signal and a tag uses Gold codes only on the preamble and the data bits of RN16 without increasing its clock frequency. We present a new communication procedure based on dynamic framed slotted ALOHA (DFSA). In order to optimize the system, we theoretically analyze the system performance in terms of slot capacity and identification rate, and formally show how the code length and the number of readers affect the identification rate. Furthermore, we propose an effective method for tag estimation and frame size adjustment, and validate it via simulations. Through an example, we demonstrate how the analysis-based technique can be used to optimize the system configurations with respect to the number of readers and the number and length of Gold codes.

  • A Distributed Sensing and Caching Database for Cognitive Radio Systems

    Ha-Nguyen TRAN  Chen SUN  Yohannes D. ALEMSEGED  Hiroshi HARADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    217-225

    This paper presents the efficiency of a sensing database and caching (SDB) for cognitive radio systems. The proposed SDB stores regulatory information from regulatory databases, and contains sensing information by distributed sensing schemes. Preliminary information processing for instance indexing, sorting, or applying some models or algorithms, etc. can be performed for the stored data. Available information and the results of the information processing are provided to cognitive radios in order to determine available spectrum and to facilitate dynamic spectrum access at lower sensing cost but higher sensing quality. The SDB is implemented in local networks, therefore information exchange between SDB and the cognitive radios can be realized at low latency and the amount of signaling traffic to global network can be reduced. This paper analyzes the effect of SDB and the performance evaluation was done in a certain condition. As a result, by deploying SDB a system can achieve up to 20% of reduction of sensing activities and maximum 1.3 times higher sensing quality.

  • Throughput and Energy Efficiency Maximization for Cognitive Relay System

    You XU  Yunzhou LI  Ming ZHAO  Hongxing ZOU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    226-233

    Cognitive radio technology, which allows secondary user (SU) to utilize the spectrum holes left by primary user (PU), was proposed to solve spectrum under-utilization problem. However, due to sensing error, SU's transmission will bring negative effects to PU's communication. Recently, cooperative relay technology was introduced to solve this problem. In this paper, a cooperative framework, which allows SU to act as a relay for primary link when needed, is considered and then a cognitive relay scheme is proposed. In order to maximize SU's throughput while keeping the system stable, we study and obtain SU's optimal strategy (i.e., relaying strategy and power allocation) by a constrained optimization problem. Since energy consumption is also an important problem for cognitive radio networks, we also investigate SU's optimal strategy to maximize SU's energy efficiency while keeping the system stable. The numerical results show that the cognitive relay scheme can achieve higher throughput and energy efficiency than reference schemes.

  • Non-coherent Power Decomposition-Based Energy Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Bingxuan ZHAO  Shigeru SHIMAMOTO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    234-242

    As the fundamental component of dynamic spectrum access, implementing spectrum sensing is one of the most important goals in cognitive radio networks due to its key functions of protecting licensed primary users from harmful interference and identifying spectrum holes for the improvement of spectrum utilization. However, its performance is generally compromised by the interference from adjacent primary channels. To cope with such interference and improve detection performance, this paper proposes a non-coherent power decomposition-based energy detection method for cooperative spectrum sensing. Due to its use of power decomposition, interference cancellation can be applied in energy detection. The proposed power decomposition does not require any prior knowledge of the primary signals. The power detection with its interference cancellation can be implemented indirectly by solving a non-homogeneous linear equation set with a coefficient matrix that involves only the distances between primary transmitters and cognitive secondary users (SUs). The optimal number of SUs for sensing a single channel and the number of channels that can be sensed simultaneously are also derived. The simulation results show that the proposed method is able to cope with the expected interference variation and achieve higher probability of detection and lower probability of false alarm than the conventional method in both hard combining and soft combining scenarios.

  • Rate Adaptation by Estimating Channel Quality in IEEE 802.11 Wireless LAN

    Minho KIM  Youngjip KIM  Chong-Ho CHOI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    243-253

    The channel characteristics of IEEE 802.11 WLAN vary with time and this can affect packet transmission performance. For achieving robust and efficient transmission, the transmission rate is controlled by exploiting the multi-rate capability of the IEEE 802.11 physical layer (PHY) to respond to the time-varying channel condition. In this paper, we propose a novel rate adaptation scheme, called RA-MCE, in which the transmitter estimates channel quality in the MAC layer to enhance throughput performance without the need to use the RTS-CTS mechanism nor to modify the IEEE 802.11 standard. RA-MCE adaptively controls the transmission rate according to the estimated channel quality by the MAC layer channel quality estimator (MCE) that uses only local MAC layer measurements. Through extensive simulations, we validate the accuracy of MCE and evaluate the performance of RA-MCE to show that it achieves higher throughput performance than other rate adaptation schemes under various circumstances.

  • A Markov-Based Satellite-to-Ground Optical Channel Model and Its Effective Coding Scheme

    Yoshitoshi YAMASHITA  Eiji OKAMOTO  Yasunori IWANAMI  Yozo SHOJI  Morio TOYOSHIMA  Yoshihisa TAKAYAMA  

     
    PAPER-Satellite Communications

      Page(s):
    254-262

    We propose a novel channel model of satellite-to-ground optical transmission to achieve a global-scale high-capacity communication network. In addition, we compose an effective channel coding scheme based on low-density generator matrix (LDGM) code suitable for that channel. Because the first successful optical satellite communication demonstrations are quite recent, no practical channel model has been introduced. We analyze the results of optical transmission experiments between ground station and the Optical Inter-orbit Communications Engineering Test Satellite (OICETS) performed by NICT and JAXA in 2008 and propose a new Markov-based practical channel model. Furthermore, using this model we design an effective long erasure code (LEC) based on LDGM to achieve high-quality wireless optical transmissions.

  • Accurate Surface Change Detection Method Using Phase of Coherence Function on SAR Imagery

    Takehiro HOSHINO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Page(s):
    263-270

    Satellite-borne SAR (synthetic aperture radar) is for high-resolution geosurface measurements. Recently, a feature extraction method based on CCD (coherent change detection) was developed, where a slight surface change on the geosurface is detected using the phase relationship between sequential complex SAR images of the same region made at different times. For accurate detection of the surface change, the log-likelihood method has been proposed. This method determines an appropriate threshold for change detection, making use of the phase characteristic of the changed area, and thus enhances the detection probability. However, this and other conventional methods do not seek to proactively employ phase information of the estimated coherence function, and their detection probability is often low, especially in the case that the target has small surface or local uniform changes. To overcome this problem, this paper proposes a novel transformation index that considers the phase difference of the coherence function. Furthermore, we introduce a pre-processing calibration method to compensate the bias error for the coherence phase which resulting mainly from the orbit error of the antenna platform. Finally, the results from numerical simulations and experiment modeling of the geosurface measurement verify the effectiveness of the proposed method, even in situations with low SNR (signal to noise ratio).

  • Lowering Error Floors of Irregular LDPC Codes by Combining Construction and Decoding

    Xiaopeng JIAO  Jianjun MU  Fan FANG  Rong SUN  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    271-274

    Irregular low-density parity-check (LDPC) codes generally have good decoding performance in the waterfall region, but they exhibit higher error floors than regular ones. In this letter, we present a hybrid method, which combines code construction and the iterative decoding algorithm, to tackle this problem. Simulation results show that the proposed scheme decreases the error floor significantly for irregular LDPC codes over binary-input additive white Gaussian noise (BIAWGN) channel.

  • Functional Duality between Distributed Source Coding and Broadcast Channel Coding in the Case of Correlated Messages

    Suhan CHOI  Hichan MOON  Eunchul YOON  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    275-278

    In this letter, functional duality between distributed source coding (DSC) with correlated messages and broadcast channel coding (BCC) with correlated messages is considered. It is shown that under certain conditions, for a given DSC problem with correlated messages, a functional dual BCC problem with correlated messages can be obtained, and vice versa. That is, the optimal encoder-decoder mappings for one problem become the optimal decoder-encoder mappings for the dual problem. Furthermore, the correlation structure of the messages in the two dual problems and the source distortion and channel cost measure for this duality are specified.

  • A New Handover Management Scheme for User Mobility in NGN

    Myoung Ju YU  Seong Gon CHOI  

     
    LETTER-Network

      Page(s):
    279-282

    This letter proposes a new handover management scheme supporting session continuity in user mobility. The proposed scheme uses mapping relationship between User Identifier and Terminal Identifier for supporting user mobility that a user changes his accessing terminal. The proposed scheme does not need to have any changes in protocol stacks.

  • A Method for Reducing Perimeter Transitions in Beacon-Less Geographic Routing for Wireless Sensor Networks

    Takayuki FUJINO  Hiromi NISHIJIMA  

     
    LETTER-Network

      Page(s):
    283-288

    This paper proposes a method for reducing redundant greedy-perimeter transitions in beacon-less geographic routing for wireless sensor networks (WSNs). Our method can be added to existing routing methods. Using a bloom filter, each node can detect a routing loop, and then the node stores the information as “failure history”. In the next forwarding the node can avoid such bad neighbors based on the failure history. Simulation results demonstrate the benefit of our method.

  • Randomized Search Strategy for Unstructured P2P Networks

    Wei-Mei CHEN  Kuang-Chu LIU  

     
    LETTER-Network

      Page(s):
    289-292

    P2P (peer-to-peer) file sharing systems have been in operation for years. However, recent studies show that many peers in P2P networks are free-riders, who download files but are unwilling to share. This paper proposes a randomized search algorithm that considers the potential of a peer for information exchange and controlled query forwarding in the search process. Based on churn situations, the simulation results in this study demonstrate that the proposed algorithm can reduce network traffic and search latency while searching for files in the system.

  • Jamming-Aware Routing in Ad Hoc Networks

    Jae-Joon LEE  Jihye LEE  Jaesung LIM  

     
    LETTER-Network

      Page(s):
    293-295

    When a jamming attack occurs, existing ad hoc routing protocols can experience significant throughput degradation and unnecessary control overhead due to the inclusion of unreliable links into routing paths. In this work, we identify which factors hinder establishment of reliable routing paths by the existing routing protocols in the face of jamming attacks. Our solution is Jamming-Aware Routing (JAR) based on OLSR protocol, which provides explicit route recovery procedures to counteract jamming attack. By establishing a reliable routing path, the proposed scheme achieves significant throughput gains as well as control overhead reduction.

  • Evaluation of a Multi Cluster Gaussian Scatterer Distribution Channel Model

    Guillermo GALAVIZ  David H. COVARRUBIAS  Angel G. ANDRADE  

     
    LETTER-Antennas and Propagation

      Page(s):
    296-299

    In this letter we perform an evaluation procedure of the Multi-Cluster Gaussian Scatterer Distribution Channel model. We present analytical expressions that allow to calculate the Angle of Arrival and Time of Arrival statistics directly and derive an expression to calculate the Angle Spread. The use of these expressions allows channel evaluation without the need for multiple ray simulation, thus reducing computational burden.

  • DOA Estimation in Unknown Noise Fields Based on Noise Subspace Extraction Technique

    Ann-Chen CHANG  Jhih-Chung CHANG  Yu-Chen HUANG  

     
    LETTER-Antennas and Propagation

      Page(s):
    300-303

    This letter realizes direction of arrival (DOA) estimation by exploiting the noise subspace based estimator. Since single subspace feature extraction fails to achieve satisfactory results under unknown noise fields, we propose a two-step subspace feature extraction technique that is effective even in these fields. When a new noise subspace is attained, the proposed estimator without prewhitening can form the maximizing orthogonality especially for unknown noise fields. Simulation results confirm the effectiveness of the proposed technique.

  • Complementary Split Ring Resonator (CSRR)-Loaded Substrate Integrated Waveguide (SIW) Metamaterial Antenna

    Jaehyurk CHOI  Sungjoon LIM  

     
    LETTER-Antennas and Propagation

      Page(s):
    304-307

    We propose a novel metamaterial antenna that is based on loading a single complementary split ring resonator (CSRR) onto a substrate integrated waveguide (SIW) structure. Negative order and zeroth-order resonance can be observed in the proposed structure. These resonance modes are used to reduce the antenna size. In addition, a high quality (Q) factor of the CSRR-loaded SIW structure can minimize the radiation loss. The -1st, 0th, and 1st resonances are experimentally observed at 6.63, 13.68, and 20.31 GHz with maximum gains of 1.59, 3.97, 6.83 dBi, respectively. The electrical size of the antenna at the -1st resonance is only 42% of the resonance of a square microstrip patch antenna.

  • Development of a New Portable Lightning Location System

    Mitsunori OZAKI  Satoshi YAGITANI  Kazuhisa MIYAZAKI  Isamu NAGANO  

     
    LETTER-Antennas and Propagation

      Page(s):
    308-312

    Using a single-site lightning location technique, a new portable lightning location system is developed. We incorporate an attitude detection technique using inertial sensors to detect an accurate electromagnetic field vector of sferics by palm-sized electromagnetic sensors which can have arbitrary attitude. The present paper describes the concept and the performance of the developed prototype of the portable system.

  • Least Squares Constant Modulus Blind Adaptive Beamforming with Sparse Constraint

    Jun LI  Hongbo XU  Hongxing XIA  Fan LIU  Bo LI  

     
    LETTER-Antennas and Propagation

      Page(s):
    313-316

    Beamforming with sparse constraint has shown significant performance improvement. In this letter, a least squares constant modulus blind adaptive beamforming with sparse constraint is proposed. Simulation results indicate that the proposed approach exhibits better performance than the well-known least squares constant modulus algorithm (LSCMA).

  • SINR Degradation due to Carrier Frequency Offset in OFDM Based Amplify-and-Forward Relay Systems

    Yanxiang JIANG  Yanxin HU  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    317-320

    In this letter, signal to interference plus noise ratio (SINR) performance is analyzed for orthogonal frequency division multiplexing (OFDM) based amplify-and-forward (AF) relay systems in the presence of carrier frequency offset (CFO) for fading channels. The SINR expression is derived under the one-relay-node scenario, and is further extended to the multiple-relay-node scenario. Analytical results show that the SINR is quite sensitive to CFO and the sensitivity of the SINR to CFO is mainly determined by the gain factor and the different power of the direct link channel and relay link channel.

  • Utility Maximization with Packet Collision Constraint in Cognitive Radio Networks

    Nguyen H. TRAN  Choong Seon HONG  Sungwon LEE  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    321-324

    We study joint rate control and resource allocation with a packet collision constraint that maximizes the total utility of secondary users in cognitive radio networks. We formulate and decouple the original optimization problem into separable subproblems and then develop an algorithm that converges to optimal rate control and resource allocation. The proposed algorithm can operate on different time-scales to reduce the amortized time complexity.

  • Novel Transmit Power Control for Energy Efficiency in IEEE 802.11 WLAN

    Seungwoo JEON  Jihoon LEE  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    325-328

    This letter proposes a novel TPC scheme that increases the energy efficiency of IEEE 802.11 WLAN users. It can determine whether to access the channel and with what level of transmit power given the current channel condition by comparing the expected energy efficiency to an adaptive threshold.

  • Diversity-Multiplexing Tradeoff Analysis for a Dynamic Decode and Forward Relay Protocol with MIMO Channels

    Taeyoung KIM  Sun-Yong KIM  Eunchul YOON  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    329-332

    In this letter, the diversity-multiplexing tradeoff (DMT) function for a special half-duplex dynamic decode and forward (DDF) relay protocol using two source-antennas, two destination-antennas, and more than two relay-antennas is derived. It is shown that the performance of the DDF relay protocol can be substantially improved by increasing the relay-antenna number, but only for low multiplexing gains.

  • Joint Design of Uplink-Downlink MIMO Relay Networks Using Duality

    Seungwon CHOI  Jung-Hyun PARK  Seokkwon KIM  Dong-Jo PARK  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    333-336

    This letter introduces a joint design method for uplink-downlink multiple-input multiple-output (MIMO) relay communication systems in which the source nodes transmit information to the destination nodes with the help of a relay. We propose a signal forwarding schceme based on the minimum mean-square error (MMSE) approach in uplink relay systems. Exploiting the duality of relay systems, we also propose a relaying scheme for downlink relay systems. Simulation results confirm that the proposed joint design method improves the performance of the relay systems compared with that of conventional relaying schemes in uplink and downlink MIMO relay systems.

  • QR Decomposition-Based Antenna Selection for Spatial Multiplexing UWB Systems with Zero-Forcing Detectors Followed by Rake Combiners

    Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    337-340

    This letter presents a criterion for selecting a transmit antenna subset when ZF detectors followed by Rake combiners are employed for spatial multiplexing (SM) ultra-wideband (UWB) multiple input multiple output (MIMO) systems. The presented criterion is based on the largest minimum post-processing signal to interference plus noise ratio of the multiplexed streams, which is obtained on the basis of QR decomposition. Simulation results show that the proposed antenna selection algorithm considerably improves the BER performance of the SM UWB MIMO systems when the number of multipath diversity branches is not so large and thus offers diversity advantages on a log-normal multipath fading channel.

  • Time-Efficient Multiple-Stage Spectrum Sensing for Cognitive Radio Systems

    Jung Min PARK  Seong-Lyun KIM  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    341-344

    To opportunistically use the licensed band, spectrum sensing has a vital role as the core component in cognitive radio systems. However, the accurate detection of the primary signal is always accompanied by significant overhead, reducing the secondary throughput. In this letter, we suggest remedying this problem by adopting multiple-stage spectrum sensing (MSS) technique. Furthermore, we investigate how our proposed MSS can be incorporated into the collaborative spectrum sensing. Our results are encouraging in that the proposed MSS with collaboration significantly reduces the sensing time compared to the conventional sensing scheme.

  • Seamless Handover Method by Channel Switching in IEEE 802.11 Wireless LANs

    Youchan JEON  Myeongyu KIM  Sungkuen LEE  Yeunwoong KYUNG  Jinwoo PARK  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    345-348

    We propose a mobility enhancement method in which APs periodically change their RF channels in a predetermined order that prevents overlap of neighboring APs' channels. Improvement in the throughput is also achieved by manipulating the DCF uplink mode and the Downlink mode. A performance evaluation shows that the proposed scheme is superior to IEEE 802.11 WLAN in handoff delay and throughput.

  • Protecting Primary Users in Cognitive Radio Networks with Effective Capacity Loss Constraint

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    349-353

    Cognitive radio (CR) in spectrum sharing mode allows secondary user (SU) to share the same spectrum simultaneously with primary user (PU), as long as the former guarantees no harmful interference is caused to the latter. This letter proposes a new type of constraint to protect the PU systems that are carrying delay-sensitive applications, namely the PU effective capacity loss constraint, which sets an upper bound on the maximum effective capacity loss of the PU due to the SU transmission. In addition, the PU effective capacity loss constraint is approximately transformed to the interference temperature (power) constraint, to make it easier to be implemented. As an example, we obtain a closed form expression of the SU effective capacity under the approximated peak interference power constraint and the results of simulations validate the proposed PU protection criterion.

  • SAR Tomography Imaging Using Sparse Bayesian Learning

    Rui MIN  Yating HU  Yiming PI  Zongjie CAO  

     
    LETTER-Sensing

      Page(s):
    354-357

    Tomo-SAR imaging with sparse baselines can be formulated as a sparse signal recovery problem, which suggests the use of the Compressive Sensing (CS) method. In this paper, a novel Tomo-SAR imaging approach based on Sparse Bayesian Learning (SBL) is presented to obtain super-resolution in elevation direction and is validated by simulation results.

  • A Low Power Bandwidth Extension Technique

    Byungsik YOON  Heewan PARK  Sangwon KANG  

     
    LETTER-Multimedia Systems for Communications

      Page(s):
    358-361

    This paper proposes a low power artificial bandwidth extension (ABE) technique that reduces computational complexity by introducing a fast codebook mapping method. We also introduce a weighted classified codebook mapping method for constructing the spectral envelope of the wideband speech signal. Classified codebooks are used to reduce spectrum mapping errors caused by characteristic difference among voiced, unvoiced and onset sound. The weighted distortion measure is also used to handle the spectral sensibility. The performance of the proposed ABE system is evaluated by a spectral distortion (SD), a perceptual evaluation of speech quality (PESQ), informal listening tests and weighted million operations per second (WMOPS) calculations. With the use of fast codebook mapping, the WMOPS complexity of the codebook mapping module is reduced by 45.17%.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.