IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E98-C No.12  (Publication Date:2015/12/01)

    Special Section on Terahertz Waves Coming to the Real World
  • FOREWORD Open Access

    Yasuhiro NAKASHA  

     
    FOREWORD

      Page(s):
    1058-1059
  • Recent Progress and Future Prospect of Photonics-Enabled Terahertz Communications Research Open Access

    Tadao NAGATSUMA  Guillermo CARPINTERO  

     
    INVITED PAPER

      Page(s):
    1060-1070

    This paper reviews a recent progress in terahertz wireless communications enabled by photonics technologies. After briefly summarizing transceiver configurations with electronics and photonics technologies, photonics-based approaches to achieving over 100-Gbit/s data rates are discussed. Then, some of our updated results on real-time wireless transmission experiments using discrete components are shown at data rates up to 50 Gbit/s. Finally, integration technologies are described by demonstrating latest advances in integrated optical sources and transmitters.

  • High-Speed Coherent Transmission Using Advanced Photonics in Terahertz Bands Open Access

    Atsushi KANNO  Pham TIEN DAT  Norihiko SEKINE  Iwao HOSAKO  Tetsuya KAWANISHI  Yuki YOSHIDA  Ken'ichi KITAYAMA  

     
    INVITED PAPER

      Page(s):
    1071-1080

    A terahertz-wave communication system directly connected to an optical fiber network is promising for application to future mobile backhaul and fronthaul links. The possible broad bandwidth in the terahertz band is useful for high-speed signal transmission as well as radio-space encapsulation to the high-frequency carrier. In both cases, the low-latency feature becomes important to enhance the throughput in mobile communication and is realized by waveform transport technology without any digital-signal-processing-based media conversion. A highly precise optical frequency comb signal generated by optical modulation and the vector signal demodulation technology adopted from advanced optical fiber communication technologies help perform modulation and demodulation with impairment compensation at just the edges of the link. Terahertz wave, radio over fiber, waveform transport, coherent detection, multilevel modulation, radio on radio.

  • Towards MMIC-Based 300GHz Indoor Wireless Communication Systems Open Access

    Ingmar KALLFASS  Iulia DAN  Sebastian REY  Parisa HARATI  Jochen ANTES  Axel TESSMANN  Sandrine WAGNER  Michael KURI  Rainer WEBER  Hermann MASSLER  Arnulf LEUTHER  Thomas MERKLE  Thomas KÜRNER  

     
    INVITED PAPER

      Page(s):
    1081-1090

    This contribution presents a full MMIC chip set, transmit and receive RF frontend and data transmission experiments at a carrier frequency of 300GHz and with data rates of up to 64Gbit/s. The radio is dedicated to future high data rate indoor wireless communication, serving application scenarios such as smart offices, data centers and home theaters. The paper reviews the underlying high speed transistor and MMIC process, the performance of the quadrature transmitter and receiver, as well as the local oscillator generation by means of frequency multiplication. Initial transmission experiments in a single-input single-output setup and zero-IF transmit and receive scheme achieve up to 64Gbit/s data rates with QPSK modulation. The paper discusses the current performance limitations of the RF frontend and will outline paths for improvements in view of achieving 100Gbit/s capability.

  • Tehrahertz CMOS Design for Low-Power and High-Speed Wireless Communication Open Access

    Minoru FUJISHIMA  Shuhei AMAKAWA  Kyoya TAKANO  Kosuke KATAYAMA  Takeshi YOSHIDA  

     
    INVITED PAPER

      Page(s):
    1091-1104

    There have recently been more and more reports on CMOS integrated circuits operating at terahertz (≥ 0.1THz) frequencies. However, design environments and techniques are not as well established as for RF CMOS circuits. This paper reviews recent progress made by the authors in terahertz CMOS design for low-power and high-speed wireless communication, including device characterization and modeling techniques. Low-power high-speed wireless data transfer at 11Gb/s and 19pJ/bit and a 7-pJ/bit ultra-low-power transceiver chipset are presented.

  • Photonic Millimeter Wave Transmitter for a Real-Time Coherent Wireless Link Based on Injection Locking of Integrated Laser Diodes

    Shintaro HISATAKE  Guillermo CARPINTERO  Yasuyuki YOSHIMIZU  Yusuke MINAMIKATA  Kazuki OOGIMOTO  Yu YASUDA  Frédéric van DIJK  Tolga TEKIN  Tadao NAGATSUMA  

     
    PAPER

      Page(s):
    1105-1111

    We propose the concept of an integrated coherent photonic wireless transmitter based on the simultaneous injection locking of two monolithically integrated distributed feedback (DFB) laser diodes (LDs) using an optical frequency comb (OFC). We characterize the basic operation of the transmitter and demonstrate that two injection-locked integrated DFB LDs are sufficiently stable to generate the carrier signal using a uni-traveling-carrier photodiode (UTC-PD) for a real-time error-free (bit error rate: BER < 10-11) coherent transmission with a data rate of 10 Gbit/s at a carrier frequency of 97 GHz. In the coherent wireless transmission, we compare the BER characteristics of the injection-locked transmitter with that of an actively phase-stabilized transmitter and show that the power penalty of 8-dB for the injection-locked transmitter is due to the RF spurious components, which can be reduced by integrating the OFC generator (OFCG) and LDs on the same chip. Our results suggest that the integration of the OFCG, DFB LDs, modulators, semiconductor optical amplifiers, and UTC-PD on the same chip is a promising strategy to develop a practical real-time ultrafast coherent millimeter/terahertz wave wireless transmitter.

  • Beyond 110 GHz InP-HEMT Based Mixer Module Using Flip-Chip Assembly for Precise Spectrum Analysis

    Shoichi SHIBA  Masaru SATO  Hiroshi MATSUMURA  Yoichi KAWANO  Tsuyoshi TAKAHASHI  Toshihide SUZUKI  Yasuhiro NAKASHA  Taisuke IWAI  Naoki HARA  

     
    PAPER

      Page(s):
    1112-1119

    A wide-bandwidth fundamental mixer operating at a frequency above 110GHz for precise spectrum analysis was developed using the InP HEMT technology. A single-ended resistive mixer was adopted for the mixer circuit. An IF amplifier and LO buffer amplifier were also developed and integrated into the mixer chip. As for packaging into a metal block module, a flip-chip bonding technique was introduced. Compared to face-up mounting with wire connections, flip-chip bonding exhibited good frequency flatness in signal loss. The mixer module with a built-in IF amplifier achieved a conversion gain of 5dB at an RF frequency of 135GHz and a 3-dB bandwidth of 35GHz. The mixer module with an LO buffer amplifier operated well even at an LO power of -20dBm.

  • 300-GHz Microstrip-to-Waveguide Transition on a Polyimide Substrate Integrated with an LTCC Substrate Integrated Waveguide

    Takuro TAJIMA  Ho-Jin SONG  Makoto YAITA  

     
    PAPER

      Page(s):
    1120-1127

    A 300-GHz hetero-generous package solution with a combination of a polyimide microstrip-to-waveguide transition on low-temperature co-fired ceramic (LTCC) is presented. To assemble three parts — a metal back-short, polyimide transition, and LTCC substrate integrated waveguide (SIW) — a ridged microstructure beside the microstrip probe was implemented to reduce the air gap on the broadwall of a back-short. A back-to-back transition exhibited an insertion loss of 4.4 dB at 300 GHz and 49-GHz bandwidth with less than a 10-dB return loss. By evaluating loss of the microstrip line and SIW, we estimated the loss for a single transition, which was 0.9 dB at 300 GHz. The probe transition with ridged metal successfully suppressed the unwanted dip in transmission characteristics and eased the difficulty in assembly. The compact transition is easy to integrate in an antenna-in-package with an MMIC chip by combining suitable substrate materials for the transition and package.

  • Characterization of Terahertz Imagers Using a Narrowband Time-Domain Terahertz Radiation and Detection System

    Sourav ROY  Kazunori SERITA  Iwao KAWAYAMA  Hironaru MURAKAMI  Yuri AVETISYAN  Masayoshi TONOUCHI  

     
    BRIEF PAPER

      Page(s):
    1128-1130

    Up to now, broadband THz time-domain system has been developed and widely used for THz inspection system; however for many THz devices for THz band wireless communication, narrow-band system would be preferred rather than typical broadband system. In this work we established a narrowband and time-domain THz radiation and detection system and characterized uncooled microbolometer-based THz imagers using that system. The central frequency of generated narrowband THz wave was 850 GHz. This system enables simultaneous measurement of pulse energy and waveform of THz pulse using a superconducting transition edge sensor for measuring energy and electro-optic sampling for measuring THz waveform. We used this system to evaluate the performance of uncooled THz imagers; IRV-T0831 and T0832 from NEC. Noise equivalent power (NEP) of approximately 0.22 pW/Hz1/2 was achieved in case of T0832 at less than 1 THz which is lower than NEP value of previous reports.

  • Power Combination in 1 THz Resonant-Tunneling-Diode Oscillators Integrated with Patch Antennas

    Kouhei KASAGI  Naoto OSHIMA  Safumi SUZUKI  Masahiro ASADA  

     
    BRIEF PAPER

      Page(s):
    1131-1133

    In this study, we propose and fabricate an oscillator array composed of three resonant-tunneling-diode terahertz oscillators integrated with slot-coupled patch antennas, and which does not require a Si lens. We measure the radiation pattern for single and arrayed oscillator, and calculate the output power using the integration of the pattern. The output power of a single oscillator was found to be ~15 µW. However, using an array configuration, almost combined output power of ~55 µW was obtained.

  • Regular Section
  • Dielectric Constant and Boundary Extraction Method for Double-Layered Dielectric Object for UWB Radars

    Takuya NIIMI  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Electromagnetic Theory

      Page(s):
    1134-1142

    Microwave ultra-wideband (UWB) radar systems are advantageous for their high-range resolution and ability to penetrate dielectric objects. Internal imaging of dielectric objects by UWB radar is a promising nondestructive method of testing aging roads and bridges and a noninvasive technique for human body examination. For these applications, we have already developed an accurate internal imaging approach based on the range points migration (RPM) method, combined with a method that efficiently estimates the dielectric constant. Although this approach accurately extracts the internal boundary, it is applicable only to highly conductive targets immersed in homogeneous dielectric media. It is not suitable for multi-layered dielectric structures such as human tissues or concrete objects. To remedy this limitation, we here propose a novel dielectric constant and boundary extraction method for double-layered materials. This new approach, which simply extends the Envelope method to boundary extraction of the inner layer, is evaluated in finite difference time domain (FDTD)-based simulations and laboratory experiments, assuming a double-layered concrete cylinder. These tests demonstrate that our proposed method accurately and simultaneously estimates the dielectric constants of both media and the layer boundaries.

  • Numerical Analyses of All-Optical Retiming Switches Using Cascade of Second Harmonic Generation and Difference Frequency Mixing in Periodically Poled Lithium Niobate Waveguides

    Yutaka FUKUCHI  Kouji HIRATA  Joji MAEDA  

     
    PAPER-Lasers, Quantum Electronics

      Page(s):
    1143-1149

    In all-optical switches using the cascade of second harmonic generation and difference frequency mixing in periodically poled lithium niobate (PPLN) waveguide devices, walk-off between the fundamental and second harmonic pulses causes crosstalk between neighboring symbols, and limits the switching performance. In this paper, we numerically study retiming characteristics of all-optical switches that employ the PPLN waveguide devices with consideration for the effects of the crosstalk and for the input timing of the data and clock pulses. We find that the time offset between the data and clock pulses can control the timing jitter of the switched output; an appropriate offset can reduce the jitter while improving the switching efficiency.

  • A Current-Mirror-Based GaAs-HBT RF Power Detector Suitable for Base Terminal Monitoring in an HBT Power Stage

    Kazuya YAMAMOTO  Hitoshi KURUSU  Miyo MIYASHTA  Satoshi SUZUKI  Hiroaki SEKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    1150-1160

    This paper describes the circuit design and measurement results of a new GaAs-HBT RF power detector proposed for use in WiMAX and wireless LAN transmitter applications. The detector, which is based on a simple current-mirror topology, occupies a small die area. It is, therefore, not only easy to implement together with a GaAs-HBT power amplifier, but can also offer approximately logarithmic (linear-in-dB) characteristics. Because it can also be driven with small voltage amplitudes, it is suitable for base-terminal monitoring at an HBT power stage. When the detector is used as a base-terminal power monitor, an appropriate base resistance added to the detection HBT effectively suppresses frequency dispersion of the detected voltage characteristics. Measurements of a prototype detector incorporated into a single-stage HBT power amplifier fabricated on the same die are as follows. The detector is capable of delivering a detected voltage of 0.35-2.5 V with a slope of less than 0.17 V/dB over a 4-to-24-dBm output power range at 3.5 GHz while drawing a current of less than 1.8 mA from a 2.85-V supply. While satisfying a log conformance error of less than 1 dB over an amplifier output power range from 4 dBm to 24 dBm, it can also suppress the detected power dispersion within 0.18 dB at approximately 15 dBm of output power over a 3.1-3.9-GHz-wide frequency range. This dispersion value is approximately one-tenth that of a conventional collector-terminal-monitor-type diode detector.

  • An AM-PM Noise Mitigation Technique in Class-C VCO

    Kento KIMURA  Aravind THARAYIL NARAYANAN  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Page(s):
    1161-1170

    This paper presents a 20GHz Class-C VCO using a noise sensitivity mitigation technique. A radio frequency Class-C VCO suffers from the AM-PM conversion, caused by the non-linear capacitance of cross coupled pair. In this paper, the phase noise degradation mechanism is discussed, and a desensitization technique of AM-PM noise is proposed. In the proposed technique, AM-PM sensitivity is canceled by tuning the tail impedance, which consists of 4-bit resistor switches. A 65-nm CMOS prototype of the proposed VCO demonstrates the oscillation frequency from 19.27 to 22.4GHz, and the phase noise of -105.7dBc/Hz at 1-MHz offset with the power dissipation of 6.84mW, which is equivalent to a Figure-of-Merit of -183.73dBc/Hz.

  • A Self-Recoverable, Frequency-Aware and Cost-Effective Robust Latch Design for Nanoscale CMOS Technology

    Aibin YAN  Huaguo LIANG  Zhengfeng HUANG  Cuiyun JIANG  Maoxiang YI  

     
    PAPER-Electronic Circuits

      Page(s):
    1171-1178

    In this paper, a self-recoverable, frequency-aware and cost-effective robust latch (referred to as RFC) is proposed in 45nm CMOS technology. By means of triple mutually feedback Muller C-elements, the internal nodes and output node of the latch are self-recoverable from single event upset (SEU), i.e. particle striking induced logic upset, regardless of the energy of the striking particle. The proposed robust latch offers a much wider spectrum of working clock frequency on account of a smaller delay and insensitivity to high impedance state. The proposed robust latch performs with lower costs regarding power and area than most of the compared latches. SPICE simulation results demonstrate that the area-power-delay product is 73.74% saving on average compared with previous radiation hardened latches.

  • A Design of 0.7-V 400-MHz Digitally-Controlled Oscillator

    Jungnam BAE  Saichandrateja RADHAPURAM  Ikkyun JO  Takao KIHARA  Toshimasa MATSUOKA  

     
    PAPER-Integrated Electronics

      Page(s):
    1179-1186

    We present a low-voltage digitally-controlled oscillator (DCO) with the third-order ΔΣ modulator utilized in the medical implant communication service (MICS) frequency band. An optimized DCO core operating in the subthreshold region is designed, based on the gm/ID methodology. Thermometer coder with the dynamic element matching and ΔΣ modulator are implemented for the frequency tuning. High frequency resolution is achieved by using the ΔΣ modulator. The ΔΣ-modulator-based LC-DCO implemented in a 130-nm CMOS technology has achieved the phase noise of -115.3 dBc/Hz at 200 kHz offset frequency with the tuning range of 382 MHz to 412 MHz for the MICS band. It consumes 700 µW from a 0.7-V supply voltage and has a high frequency resolution of 18 kHz.

  • Soft-Output Decoding Approach of 2D Modulation Codes in Bit-Patterned Media Recording Systems

    Chanon WARISARN  Piya KOVINTAVEWAT  

     
    PAPER-Storage Technology

      Page(s):
    1187-1192

    The two-dimensional (2D) interference is one of the major impairments in bit-patterned media recording (BPMR) systems due to small bit and track pitches, especially at high recording densities. To alleviate this problem, we introduced a rate-4/5 constructive inter-track interference (CITI) coding scheme to prevent the destructive data patterns to be written onto a magnetic medium for an uncoded BPMR system, i.e., without error-correction codes. Because the CITI code produces only the hard decision, it cannot be employed in a coded BPMR system that uses a low-density parity-check (LDPC) code. To utilize it in an iterative decoding scheme, we propose a soft CITI coding scheme based on the log-likelihood ratio algebra implementation in Boolean logic mappings in order that the soft CITI coding scheme together with a modified 2D soft-output Viterbi algorithm (SOVA) detector and a LDPC decoder will jointly perform iterative decoding. Simulation results show that the proposed scheme provides a significant performance improvement, in particular when an areal density (AD) is high and/or the position jitter is large. Specifically, at a bit-error rate of 10-4 and no position jitter, the proposed system can provide approximately 1.8 and 3.5 dB gain over the conventional coded system without using the CITI code at the ADs of 2.5 and 3.0 Tera-bit per square inch (Tb/in2), respectively.

  • Novel DEM Technique for Current-Steering DAC in 65-nm CMOS Technology

    Yuan WANG  Wei SU  Guangliang GUO  Xing ZHANG  

     
    BRIEF PAPER-Electronic Circuits

      Page(s):
    1193-1195

    A novel dynamic element matching (DEM) method, called binary-tree random DEM (BTR-DEM), is presented for a Nyquist-rate current-steering digital-to-analog converter (DAC). By increasing or decreasing the number of unit current sources randomly at the same time, the BTR-DEM encoding reduces switch transition glitches. A 5-bit current-steering DAC with the BTR-DEM technique is implemented in a 65-nm CMOS technology. The measured spurious free dynamic range (SFDR) attains 42 dB for a sample rate of 100 MHz and shows little dependence on signal frequency.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.