Munehiro MATSUURA Tsutomu SASAO
A multiple-output function can be represented by a binary decision diagram for characteristic function (BDD_for_CF). This paper presents a method to represent multiple-output incompletely specified functions using BDD_for_CFs. An algorithm to reduce the widths of BDD_for_CFs is presented. This method is useful for decomposition of incompletely specified multiple-output functions. Experimental results for radix converters, adders, a multiplier, and lists of English words show that this method is useful for the synthesis of LUT cascades. An implementation of English words list by LUT cascades and an auxiliary memory is also shown.
Junichi AKITA Hiroaki TAKAGI Keisuke DOUMAE Akio KITAGAWA Masashi TODA Takeshi NAGASAKI Toshio KAWASHIMA
Although the line-of-sight (LoS) is expected to be useful as input methodology for computer systems, the application area of the conventional LoS detection system composed of video camera and image processor is restricted in the specialized area, such as academic research, due to its large size and high cost. There is a rapid eye motion, so called 'saccade' in our eye motion, which is expected to be useful for various applications. Because of the saccade's very high speed, it is impossible to track the saccade without using high speed camera. The authors have been proposing the high speed vision chip for LoS detection including saccade based on the pixel parallel processing architecture, however, its resolution is very low for the large size of its pixel. In this paper, we propose and discuss an architecture of the vision chip for LoS detection including saccade based on column-parallel processing manner for increasing the resolution with keeping high processing speed.
Hideyuki FURUHASHI Yoshinobu KAJIKAWA Yasuo NOMURA
In this paper, we propose a low complexity realization method for compensating for nonlinear distortion. Generally, nonlinear distortion is compensated for by a linearization system using a Volterra kernel. However, this method has a problem of requiring a huge computational complexity for the convolution needed between an input signal and the 2nd-order Volterra kernel. The Simplified Volterra Filter (SVF), which removes the lines along the main diagonal of the 2nd-order Volterra kernel, has been previously proposed as a way to reduce the computational complexity while maintaining the compensation performance for the nonlinear distortion. However, this method cannot greatly reduce the computational complexity. Hence, we propose a subband linearization system which consists of a subband parallel cascade realization method for the 2nd-order Volterra kernel and subband linear inverse filter. Experimental results show that this proposed linearization system can produce the same compensation ability as the conventional method while reducing the computational complexity.
Yukihiro IGUCHI Tsutomu SASAO Munehiro MATSUURA
In arithmetic circuits for digital signal processing, radixes other than two are often used to make circuits faster. In such cases, radix converters are necessary. However, in general, radix converters tend to be complex. This paper considers design methods for p-nary to binary converters. First, it considers Look-Up Table (LUT) cascade realizations. Then, it introduces a new design technique called arithmetic decomposition by using LUTs and adders. Finally, it compares the amount of hardware and performance of radix converters implemented by FPGAs. 12-digit ternary to binary converters on Cyclone II FPGAs designed by the proposed method are faster than ones by conventional methods.
Wei CHEN Johan BAUWELINCK Peter OSSIEUR Xing-Zhi QIU Jan VANDEWEGE
This paper describes a current-steering Digital-to-Analog Converter (IDAC) architecture with a novel switching scheme, designed for GPON Burst Mode Laser Drivers (BMLD) and realized in a 0.35 µm SiGe BiCMOS technology with 3.3 V power supply. The (4+6) segmented architecture of the proposed 10-bit IDAC is optimized for minimum DNL (Differential Nonlinearity). It combines a 4-bit MSBs (Most Significant Bits) unit-element sub-DAC and a 6-bit LSBs (Least Significant Bits) binary-weighted sub-DAC. A switching scheme based on this dedicated architecture yields a high monotony and a fast settling time. The linearity errors caused by systematic influences and random variations are reduced by the 2-D double centroid symmetrical architecture. Experimental results show that the DNL is below 0.5 LSB and that the settling time after the output current mirror is below 12 ns. Although the proposed IDAC architecture was designed for a BMLD chip, the design concept is generic and can be applied for developing other monotonic high-speed current-mode DACs.
In the past twenty years, there were only a few constructions for Boolean functions with nonlinearity exceeding the quadratic bound 2n-1-2(n-1)/2 when n is odd (we shall call them Boolean functions with very high nonlinearity). The first basic construction was by Patterson and Wiedemann in 1983, which produced unbalanced function with very high nonlinearity. But for cryptographic applications, we need balanced Boolean functions. Therefore in 1993, Seberry, Zhang and Zheng proposed a secondary construction for balanced functions with very high nonlinearity by taking the direct sum of a modified bent function with the Patterson-Wiedemann function. Later in 2000, Sarkar and Maitra constructed such functions by taking the direct sum of a bent function with a modified Patterson-Wiedemann function. In this paper, we propose a new secondary construction for balanced Boolean functions with very high nonlinearity by recursively composing balanced functions with very high nonlinearity with quadratic functions. This is the first construction for balanced function with very high nonlinearity not based on the direct sum approach. Our construction also have other desirable properties like high algebraic degree and large linear span.
Xuesong TAN Shuo-Yen Robert LI
The cascade of two baseline networks in tandem is a rearrangeable network. The cascade of two omega networks appended with a certain interconnection pattern is also rearrangeable. These belong to the general problem: for what banyan-type network (i.e., bit-permuting unique-routing network) is the tandem cascade a rearrangeable network? We relate the problem to the trace and guide of banyan-type networks. Let τ denote the trace permutation of a 2n2n banyan-type network and γ the guide permutation of it. This paper proves that rearrangeability of the tandem cascade of the network is solely determined by the transposition τγ-1. Such a permutation is said to be tandem rearrangeable when the tandem cascade is indeed rearrangeable. We identify a few tandem rearrangeable permutations, each implying the rearrangeability of the tandem cascade of a wide class of banyan-type networks.
Werapon CHIRACHARIT Yajie SUN Pinit KUMHOM Kosin CHAMNONGTHAI Charles F. BABBS Edward J. DELP
Automatic detection of normal mammograms, as a "first look" for breast cancer, is a new approach to computer-aided diagnosis. This approach may be limited, however, by two main causes. The first problem is the presence of poorly separable "crossed-distributions" in which the correct classification depends upon the value of each feature. The second problem is overlap of the feature distributions that are extracted from digitized mammograms of normal and abnormal patients. Here we introduce a new Support Vector Machine (SVM) based method utilizing with the proposed uncrossing mapping and Local Probability Difference (LPD). Crossed-distribution feature pairs are identified and mapped into a new features that can be separated by a zero-hyperplane of the new axis. The probability density functions of the features of normal and abnormal mammograms are then sampled and the local probability difference functions are estimated to enhance the features. From 1,000 ground-truth-known mammograms, 250 normal and 250 abnormal cases, including spiculated lesions, circumscribed masses or microcalcifications, are used for training a support vector machine. The classification results tested with another 250 normal and 250 abnormal sets show improved testing performances with 90% sensitivity and 89% specificity.
Shingo TAKAHASHI Shuji TSUKIYAMA Masanori HASHIMOTO Isao SHIRAKAWA
In the design of an active matrix LCD (Liquid Crystal Display), the ratio of the pixel voltage to the video voltage (RPV) of a pixel is an important factor of the performance of the LCD, since the pixel voltage of each pixel determines its transmitted luminance. Thus, of practical importance is the issue of how to maintain the admissible allowance of RPV of each pixel within a prescribed narrow range. This constraint on RPV is analyzed in terms of circuit parameters associated with the sampling switch and sampling pulse of a column driver in the LCD. With the use of a minimal set of such circuit parameters, a design procedure is described dedicatedly for the sampling switch, which intends to seek an optimal sampling switch as well as an optimal sampling pulse waveform. A number of experimental results show that an optimal sampling switch attained by the proposed procedure yields a source driver with almost 18% less power consumption than the one by manual design. Moreover, the percentage of the RPVs within 1001% among 270 cases of fluctuations is 88.1% for the optimal sampling switch, but 46.7% for the manual design.
Shinobu NAGAYAMA Tsutomu SASAO Jon T. BUTLER
This paper presents an architecture and a synthesis method for compact numerical function generators (NFGs) for trigonometric, logarithmic, square root, reciprocal, and combinations of these functions. Our NFG partitions a given domain of the function into non-uniform segments using an LUT cascade, and approximates the given function by a quadratic polynomial for each segment. Thus, we can implement fast and compact NFGs for a wide range of functions. Experimental results show that: 1) our NFGs require, on average, only 4% of the memory needed by NFGs based on the linear approximation with non-uniform segmentation; 2) our NFG for 2x-1 requires only 22% of the memory needed by the NFG based on a 5th-order approximation with uniform segmentation; and 3) our NFGs achieve about 70% of the throughput of the existing table-based NFGs using only a few percent of the memory. Thus, our NFGs can be implemented with more compact FPGAs than needed for the existing NFGs. Our automatic synthesis system generates such compact NFGs quickly.
Hiroki NAKAHARA Tsutomu SASAO Munehiro MATSUURA
This paper represents a cycle-based logic simulation method using an LUT cascade emulator, where an LUT cascade consists of multiple-output LUTs (cells) connected in series. The LUT cascade emulator is an architecture that emulates LUT cascades. It has a control part, a memory for logic, and registers. It connects the memory to registers through a programmable interconnection circuit, and evaluates the given circuit stored in the memory. The LUT cascade emulator runs on an ordinary PC. This paper also compares the method with a Levelized Compiled Code (LCC) simulator and a simulator using a Quasi-Reduced Multi-valued Decision Diagram (QRMDD). Our simulator is 3.5 to 10.6 times faster than the LCC, and 1.1 to 3.9 times faster than the one using a QRMDD. The simulation setup time is 2.0 to 9.8 times shorter than the LCC. The necessary amount of memory is 1/1.8 to 1/5.5 of the one using a QRMDD.
Junichi AKITA Hiroaki TAKAGI Takeshi NAGASAKI Masashi TODA Toshio KAWASHIMA Akio KITAGAWA
Rapid eye motion, or so called saccade, is a very quick eye motion which always occurs regardless of our intention. Although the line of sight (LOS) with saccade tracking is expected to be used for a new type of computer-human interface, it is impossible to track it using the conventional video camera, because of its speed which is often up to 600 degrees per second. Vision Chip is an intelligent image sensor which has the photo receptor and the image processing circuitry on a single chip, which can process the acquired image information by keeping its spatial parallelism. It has also the ability of implementing the very compact integrated vision system. In this paper, we describe the vision chip architecture which has the capability of detecting the line of sight from infrared eye image, with the processing speed supporting the saccade tracking. The vision chip described here has the pixel parallel processing architecture, with the node automata for each pixel as image processing. The acquired image is digitized to two flags indicating the Purkinje's image and the pupil by comparators at first. The digitized images are then shrunk, followed by several steps of expanding by node automata located at each pixel. The shrinking process is kept executed until all the pixels disappear, and the pixel disappearing at last indicates the center of the Purkinje's image and the pupil. This disappearing step is detected by the projection circuitry in pixel circuit for fast operation, and the coordinates of the center of the Purkinje's image and the pupil are generated by the simple encoders. We describe the whole architecture of this vision chip, as well as the pixel architecture. We also describe the evaluation of proposed algorithm with numerical simulation, as well as processing speed using FPGA, and improvement in resolution using column parallel architecture.
A multi-stage approach -- which is fast, robust and easy to train -- for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage has been added to detect face candidate regions more quickly by using a larger window size and larger moving step size. Second, support vector machine (SVM) classifiers are used instead of AdaBoost classifiers in the last stage, and Haar wavelet features selected by the previous stage are reused for the SVM classifiers robustly and efficiently. By combining AdaBoost and SVM classifiers, the final system can achieve both fast and robust detection because most non-face patterns are rejected quickly in earlier layers, while only a small number of promising face patterns are classified robustly in later layers. The proposed multi-stage-based system has been shown to run faster than the original AdaBoost-based system while maintaining comparable accuracy.
Guang TIAN Feihu QI Masatoshi KIMACHI Yue WU Takashi IKETANI
This paper presents a 3D feature-based binocular tracking algorithm for tracking crowded people indoors. The algorithm consists of a two stage 3D feature points grouping method and a robust 3D feature-based tracking method. The two stage 3D feature points grouping method can use kernel-based ISODATA method to detect people accurately even though the part or almost full occlusion occurs among people in surveillance area. The robust 3D feature-based Tracking method combines interacting multiple model (IMM) method with a cascade multiple feature data association method. The robust 3D feature-based tracking method not only manages the generation and disappearance of a trajectory, but also can deal with the interaction of people and track people maneuvering. Experimental results demonstrate the robustness and efficiency of the proposed framework. It is real-time and not sensitive to the variable frame to frame interval time. It also can deal with the occlusion of people and do well in those cases that people rotate and wriggle.
Ho Kyung KANG Yong Man RO Sung Min KIM
Microcalcification detection is an important part of early breast cancer detection. In this paper, we propose a microcalcification detection algorithm using adaptive contrast enhancement in a mammography CAD (computer-aided diagnosis) system. The proposed microcalcification detection algorithm includes two parts. One is adaptive contrast enhancement in which the enhancement filtering parameters are determined based on noise characteristics of the mammogram. The other is a multi-stage microcalcification detection. The results show that the proposed microcalcification detection algorithm is much more robust against fluctuating noisy environments.
Esteban TLELO-CUAUTLE Delia TORRES-MUÑOZ Leticia TORRES-PAPAQUI
A systematic method is introduced to the computational synthesis of CMOS voltage followers (VFs). The method is divided in three steps: generation of the small-signal circuitry by selection of nullators to model the behavior of a VF, and addition of norators to form nullator-norator joined-pairs; generation of the bias circuitry by addition of ideal biases according to the properties of nullators and norators; and synthesis of the joined-pairs by MOSFETs, and of the current-biases by CMOS current mirrors. It is shown that the proposed synthesis method has the capability to generate already known and new CMOS VF topologies.
Hiroki NAKAHARA Tsutomu SASAO Munehiro MATSUURA
This paper shows a design method for a sequential circuit by using a Look-Up Table (LUT) ring. The method consists of two steps: The first step partitions the outputs into groups. The second step realizes them by LUT cascades, and allocates the cells of the cascades into the memory. The system automatically finds a fast implementation by maximally utilizing available memory. With the presented algorithm, we can easily design sequential circuits satisfying given specifications. The paper also compares the LUT ring with logic simulator to realize sequential circuits: the LUT ring is 25 to 237 times faster than a logic simulator that uses the same amount of memory.
Hideya TAKEO Kazuo SHIMURA Takashi IMAMURA Akinobu SHIMIZU Hidefumi KOBATAKE
CR (Computed Radiography) is characterized by high sensitivity and wide dynamic range. Moreover, it has the advantage of being able to transfer exposed images directly to a computer-aided detection (CAD) system which is not possible using conventional film digitizer systems. This paper proposes a high-performance clustered microcalcification detection system for CR mammography. Before detecting and classifying candidate regions, the system preprocesses images with a normalization step to take into account various imaging conditions and to enhance microcalcifications with weak contrast. Large-scale experiments using images taken under various imaging conditions at seven hospitals were performed. According to analysis of the experimental results, the proposed system displays high performance. In particular, at a true positive detection rate of 97.1%, the false positive clusters average is only 0.4 per image. The introduction of geometrical features of each microcalcification for identifying true microcalcifications contributed to the performance improvement. One of the aims of this study was to develop a system for practical use. The results indicate that the proposed system is promising.
A method of evaluating the wavelength filter spectrum response is introduced. The increase of the crosstalk level due to the filtering and the relation between the total crosstalk and the spectral efficiency are derived in detail using the Gaussian filter. Since this method can be applied to various kinds of filter spectrum responses, the ultimate spectral efficiencies of filters are compared. In this comparison, the problem of the box-like filter, which has been considered to be desirable, is revealed, and this is improved by cascading the filter spectrum. The requirement on the rejection floor that inheres in the filter is also made clear.
Konstantinos SIOZIOS George KOUTROUMPEZIS Konstantinos TATAS Nikolaos VASSILIADIS Vasilios KALENTERIDIS Haroula POURNARA Ilias PAPPAS Dimitrios SOUDRIS Antonios THANAILAKIS Spiridon NIKOLAIDIS Stilianos SISKOS
A complete system for the implementation of digital logic in a Field-Programmable Gate Array (FPGA) platform is introduced. The novel power-efficient FPGA architecture was designed and simulated in STM 0.18 µm CMOS technology. The detailed design and circuit characteristics of the Configurable Logic Block, the interconnection network, the switch box and the connection box were determined and evaluated in terms of energy, delay and area. A number of circuit-level low-power techniques were employed because power consumption was the primary concern. Additionally, a complete tool framework for the implementation of digital logic circuits in FPGA platforms is introduced. Having as input VHDL description of an application, the framework derives the reconfiguration bitstream of FPGA. The framework consists of: i) non-modified academic tools, ii) modified academic tools and iii) new tools. Furthermore, the framework can support a variety of FPGA architectures. Qualitative and quantitative comparisons with existing academic and commercial architectures and tools are provided, yielding promising results.