Keyword Search Result

[Keyword] energy(542hit)

121-140hit(542hit)

  • Optimal Transmission Policy in Decoupled RF Energy Harvesting Networks

    Yu Min HWANG  Jun Hee JUNG  Yoan SHIN  Jin Young KIM  Dong In KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    516-520

    In this letter, we study a scenario based on decoupled RF energy harvesting networks (DRF-EHNs) that separate energy sources from information sources to overcome the doubly near-far problem and improve harvesting efficiency. We propose an algorithm to maximize energy efficiency (EE) while satisfying constraints on the maximum transmit power of the hybrid access point (H-AP) and power beacon (PB), while further satisfying constraints on the minimum quality of service and minimum amount of harvested power in multi-user Rayleigh fading channel. Using nonlinear fractional programming and Lagrangian dual decomposition, we optimize EE with four optimization arguments: the transmit power from the H-AP and PB, time-splitting ratio, and power-splitting ratio. Numerical results show that the proposed algorithm is more energy-efficient compared to baseline schemes.

  • Joint Information and Energy Packet Scheduling in Wireless Powered Sensor Network

    Sungbok LEE  Jaehyun PARK  Jonghyeok LEE  

     
    PAPER-Network

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    520-527

    In this paper, we consider wireless powered sensor networks. In these networks, the energy access point (EAP) transmits the energy packets to the sensor nodes and then, the sensor nodes send their sensing data to the information access point (IAP) by exploiting the harvested energy. Because the sensor nodes have a limited information queue (data storage) and energy queue (battery), energy packet/data packet scheduling is important. Accordingly, to reduce the total energy required to support the associated sensor network and simultaneously avoid sensing data loss, the energy packet/data packet transmission periods are jointly optimized. Furthermore, analyses identify the optimal location of EAP which will yield energy-efficient wireless powered sensor networks. Through the computer simulations, the performance of the proposed packet scheduling and deployment policy is demonstrated.

  • Intercarrier-Interference-Aware Energy Saving for High-Mobility Cognitive OFDM Systems

    Wenjun XU  Xuemei ZHOU  Yanda CHEN  Zhihui LIU  Zhiyong FENG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/07/18
      Vol:
    E101-B No:1
      Page(s):
    203-212

    Cognitive orthogonal frequency-division multiplexing (OFDM) systems are spectrum-efficient yet vulnerable to intercarrier interference (ICI), especially in high-mobility scenarios. In this paper, the energy efficiency optimization problem in high-mobility cognitive OFDM system is considered. The aim is to maximize the energy efficiency by adapting subcarrier bandwidth, power allocation and sensing duration in the presence of ICI, under the constraints of the total power budget of secondary networks, the probabilistic interference limits for the protection of primary networks, and the subcarrier spacing restriction for high-mobility OFDM systems. In order to tackle the intractable non-convex optimization problem induced by ICI, an ICI-aware power allocation algorithm is proposed, by referring to noncooperative game theory. Moreover, a near-optimal subcarrier bandwidth search algorithm based on golden section methods is also presented to maximize the system energy efficiency. Simulation results show that the proposed algorithms can achieve a considerable energy efficiency improvement by up to 133% compared to the traditional static subcarrier bandwidth and power allocation schemes.

  • Design Considerations on Power, Performance, Reliability and Yield in 3D NAND Technology

    Toru TANZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:1
      Page(s):
    78-81

    This paper discusses design challenges and possible solutions for 3D NAND. A 3D NAND array inherently has a larger parasitic capacitance and thereby critical area in terms of product yield. To mitigate such issues associated with 3D NAND technology, array control and divided array architecture for improving reliability and yield and for reducing area overhead, program time, energy per bit and array noise are proposed.

  • A Necessary and Sufficient Condition of Supply and Threshold Voltages in CMOS Circuits for Minimum Energy Point Operation

    Jun SHIOMI  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2764-2775

    Scaling supply voltage (VDD) and threshold voltage (Vth) dynamically has a strong impact on energy efficiency of CMOS LSI circuits. Techniques for optimizing VDD and Vth simultaneously under dynamic workloads are thus widely investigated over the past 15 years. In this paper, we refer to the optimum pair of VDD and Vth, which minimizes the energy consumption of a circuit under a specific performance constraint, as a minimum energy point (MEP). Based on the simple transregional models of a CMOS circuit, this paper derives a simple necessary and sufficient condition for the MEP operation. The simple condition helps find the MEP of CMOS circuits. Measurement results using standard-cell based memories (SCMs) fabricated in a 65-nm process technology also validate the condition derived in this paper.

  • A Minimum Energy Point Tracking Algorithm Based on Dynamic Voltage Scaling and Adaptive Body Biasing

    Shu HOKIMOTO  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2776-2784

    Scaling the supply voltage (Vdd) and threshold voltage (Vth) for minimizing the energy consumption of processors dynamically is highly desired for applications such as wireless sensor network and Internet of Things (IoT). In this paper, we refer to the pair of Vdd and Vth, which minimizes the energy consumption of the processor under a given operating condition, as a minimum energy point (MEP in short). Since the MEP is heavily dependent on an operating condition determined by a chip temperature, an activity factor, a process variation, and a performance required for the processor, it is not very easy to closely track the MEP at runtime. This paper proposes a simple but effective algorithm for dynamically tracking the MEP of a processor under a wide range of operating conditions. Gate-level simulation of a 32-bit RISC processor in a 65nm process demonstrates that the proposed algorithm tracks the MEP under a situation that operating condition widely vary.

  • A New Energy Efficient Clustering Algorithm Based on Routing Spanning Tree for Wireless Sensor Network

    Yating GAO  Guixia KANG  Jianming CHENG  Ningbo ZHANG  

     
    PAPER-Network

      Pubricized:
    2017/05/26
      Vol:
    E100-B No:12
      Page(s):
    2110-2120

    Wireless sensor networks usually deploy sensor nodes with limited energy resources in unattended environments so that people have difficulty in replacing or recharging the depleted devices. In order to balance the energy dissipation and prolong the network lifetime, this paper proposes a routing spanning tree-based clustering algorithm (RSTCA) which uses routing spanning tree to analyze clustering. In this study, the proposed scheme consists of three phases: setup phase, cluster head (CH) selection phase and steady phase. In the setup phase, several clusters are formed by adopting the K-means algorithm to balance network load on the basis of geographic location, which solves the randomness problem in traditional distributed clustering algorithm. Meanwhile, a conditional inter-cluster data traffic routing strategy is created to simplify the networks into subsystems. For the CH selection phase, a novel CH selection method, where CH is selected by a probability based on the residual energy of each node and its estimated next-time energy consumption as a function of distance, is formulated for optimizing the energy dissipation among the nodes in the same cluster. In the steady phase, an effective modification that counters the boundary node problem by adjusting the data traffic routing is designed. Additionally, by the simulation, the construction procedure of routing spanning tree (RST) and the effect of the three phases are presented. Finally, a comparison is made between the RSTCA and the current distributed clustering protocols such as LEACH and LEACH-DT. The results show that RSTCA outperforms other protocols in terms of network lifetime, energy dissipation and coverage ratio.

  • Relay Assignment for Energy Harvesting Cooperative Communication Systems with Long-Term CSI and Energy Side Information

    Feng KE  Yue ZHANG  Yuanyi DENG  Yuehua DING  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/19
      Vol:
    E100-B No:12
      Page(s):
    2139-2146

    A relay assignment scheme is proposed in this paper that minimizes the mean delay of transmission for energy harvesting (EH) cooperative communication systems, whose source node and relay nodes are all equipped with energy harvesters. We jointly consider the long-term channel side information (CSI) and energy side information (ESI) of all nodes, and formulate the delay minimization problem as an integer programming problem. To solve this problem, a refined cyclic coordinate method (RCCM) is proposed that considers the cases of fixed-packet-length (FPL) and variable-packet-length (VPL) transmission. Simulation results show that the proposed scheme achieves performance close to that of the real-time relay selection (RRS) scheme with instantaneous CSI and ESI, which gives upper bound of the performance. Moreover, compared with the simple relay rotation (SRR) scheme where each relay has equal service time, the performance of the proposed scheme is significantly improved.

  • Energy-Performance Modeling of Speculative Checkpointing for Exascale Systems

    Muhammad ALFIAN AMRIZAL  Atsuya UNO  Yukinori SATO  Hiroyuki TAKIZAWA  Hiroaki KOBAYASHI  

     
    PAPER-High performance computing

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2749-2760

    Coordinated checkpointing is a widely-used checkpoint/restart protocol for fault-tolerance in large-scale HPC systems. However, this protocol will involve massive amounts of I/O concentration, resulting in considerably high checkpoint overhead and high energy consumption. This paper focuses on speculative checkpointing, a CPR mechanism that allows for temporal distribution of checkpointings to avoid I/O concentration. We propose execution time and energy models for speculative checkpointing, and investigate energy-performance characteristics when speculative checkpointing is adopted in exascale systems. Using these models, we study the benefit of speculative checkpointing over coordinated checkpointing under various realistic scenarios for exascale HPC systems. We show that, compared to coordinated checkpointing, speculative checkpointing can achieve up to a 11% energy reduction at the cost of a relatively-small increase in the execution time. In addition, a significant energy-performance trade-off is expected when the system scale exceeds 1.2 million nodes.

  • Energy Budget Formulation in Progress-Based Nearest Forwarding Routing Policy for Energy-Efficient Wireless Sensor Networks

    Sho SASAKI  Yuichi MIYAJI  Hideyuki UEHARA  

     
    PAPER-Wireless networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2808-2817

    A number of battery-driven sensor nodes are deployed to operate a wireless sensor network, and many routing protocols have been proposed to reduce energy consumption for data communications in the networks. We have proposed a new routing policy which employs a nearest-neighbor forwarding based on hop progress. Our proposed routing method has a topology parameter named forwarding angle to determine which node to connect with as a next-hop, and is compared with other existing policies to clarify the best topology for energy efficiency. In this paper, we also formulate the energy budget for networks with the routing policy by means of stochastic-geometric analysis on hop-count distributions for random planar networks. The formulation enables us to tell how much energy is required for all nodes in the network to forward sensed data in a pre-deployment phase. Simulation results show that the optimal topology varies according to node density in the network. Direct communication to the sink is superior for a small-sized network, and the multihop routing is more effective as the network becomes sparser. Evaluation results also demonstrate that our energy formulation can well approximate the energy budget, especially for small networks with a small forwarding angle. Discussion on the error with a large forwarding angle is then made with a geographical metric. It is finally clarified that our analytical expressions can obtain the optimal forwarding angle which yields the best energy efficiency for the routing policy when the network is moderately dense.

  • Energy-Efficient Standard Cell Memory with Optimized Body-Bias Separation in Silicon-on-Thin-BOX (SOTB)

    Yusuke YOSHIDA  Kimiyoshi USAMI  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2785-2796

    This paper describes a design of energy-efficient Standard Cell Memory (SCM) using Silicon-on-Thin-BOX (SOTB). We present automatic place and routing (P&R) methodology for optimal body-bias separation (BBS) for SCM, which enables to apply different body bias voltages to latches and to other peripheral circuits within SCM. Capability of SOTB to effectively reduce leakage by body biasing is fully exploited in BBS. Simulation results demonstrated that our approach allows us to design SCM with 40% smaller energy dissipation at the energy minimum voltage as compared to the conventional design flow. For the process and temperature variations, Adaptive Body Bias (ABB) for SCM with our BBS provided 70% smaller leakage energy than ABB for the conventional SCM, while achieving the same clock frequency.

  • esVHO: Energy Saving Vertical Handover Extension for Local SDN in Non-Interconnected Environment

    Toan Nguyen DUC  Eiji KAMIOKA  

     
    PAPER

      Pubricized:
    2017/05/16
      Vol:
    E100-B No:11
      Page(s):
    2027-2037

    Wireless technologies that offer high data rate are generally energy-consuming ones while low-energy technologies commonly provide low data rate. Both kinds of technologies have been integrated in a single mobile device for different services. Therefore, if the service does not always require high data rate, the low energy technology, i.e., Bluetooth, can be used instead of the energy-consuming one, i.e., Wi-Fi, for saving energy. It is obvious that energy savings are maximized by turning the unused technology off. However, when active sessions of ongoing services migrate between different technologies, the network-layer connectivity must be maintained, or a vertical handover (VHO) between different networks is required. Moreover, when the networks are not interconnected, the VHO must be fully controlled by the device itself. The device typically navigates traffic through the firmware of the wireless network interface cards (WNIC) using their drivers, which are dependent on the vendors. To control the traffic navigation between WNICs without any modification of the WNICs' drivers, Software-Defined Networking (SDN) can be applied locally on the mobile device, the so called local SDN. In the local SDN architecture, a local SDN controller (SDNC) is used to control a virtual OpenFlow switch, which turns WNICs into its switch ports. Although the SDNC can navigate the traffic, it lacks the global view of the network topology. Hence, to correctly navigate traffic in a VHO process, an extended SDN controller (extSDNC) was proposed in a previous work. With the extSDNC, the SDNC can perform VHO based on a link layer trigger but with a significant packet loss rate. Therefore, in this paper, a framework named esVHO is proposed that executes VHO at the network layer to reduce the packet loss rate and reduce energy consumption. Experiments on VHO performance prove that esVHO can reduce the packet loss rate considerably. Moreover, the results of an energy saving experiment show that esVHO performs high energy saving up to 4.89 times compared to the others.

  • Energy-Efficient Resource Allocation Strategy for Low Probability of Intercept and Anti-Jamming Systems

    Yu Min HWANG  Jun Hee JUNG  Kwang Yul KIM  Yong Sin KIM  Jae Seang LEE  Yoan SHIN  Jin Young KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:11
      Page(s):
    2498-2502

    The aim of this letter is to guarantee the ability of low probability of intercept (LPI) and anti-jamming (AJ) by maximizing the energy efficiency (EE) to improve wireless communication survivability and sustain wireless communication in jamming environments. We studied a scenario based on one transceiver pair with a partial-band noise jammer in a Rician fading channel and proposed an EE optimization algorithm to solve the optimization problem. With the proposed EE optimization algorithm, the LPI and AJ can be simultaneously guaranteed while satisfying the constraint of the maximum signal-to-jamming-and-noise ratio and combinatorial subchannel allocation condition, respectively. The results of the simulation indicate that the proposed algorithm is more energy-efficient than those of the baseline schemes and guarantees the LPI and AJ performance in a jamming environment.

  • A 3.2mA-RX 3.5mA-TX Fully Integrated SoC for Bluetooth Low Energy System

    Masayoshi OSHIRO  Tatsuhiko MARUYAMA  Takashi TOKAIRIN  Yuki TUDA  Tong WANG  Naotaka KOIDE  Yosuke OGASAWARA  Tuan Thanh TA  Hiroshi YOSHIDA  Kenichi SAMI  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    833-840

    A fully-integrated system-on-chip (SoC) for Bluetooth Low Energy (BLE) with 3.2mA RX and 3.5mA TX current consumption is presented. To achieve both low current consumption and high performance, the SoC employs a sliding-IF architecture with high tolerance against out-of-band-blocking signals, a power management unit with improved efficiency, and techniques to reduce current in core circuits. The SoC achieves RX sensitivity of -93dBm and maximum output power of 0dBm. The SoC is in compliance with version 4.2 of the Bluetooth specifications and with the radio regulations of the FCC, ETSI, and ARIB. The SoC achieves the minimum level of current consumption for both RX and TX modes in the published product-level SoCs.

  • An Adaptive Backoff Scheme in Wireless Sensor Networks

    Batbayar KHANDISH  Hyun PARK  Jung-Bong SUK  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E100-A No:10
      Page(s):
    2212-2215

    The IEEE 802.15.4 standard enables a short range, low data rate and low power communication between devices in wireless sensor networks (WSNs). In IEEE 802.15.4, a slotted carrier sensing multiple access with collision avoidance (CSMA/CA) algorithm is employed to coordinate a large number of sensor devices. Unlike IEEE 802.11 wireless LAN (WLAN), energy consumption requirements enable it to use fewer number of backoffs, which adversely increase collisions, resulting in degradation of energy consumption. In this letter, we devise an adaptive backoff scheme in WSN whose backoff range is adjusted depending on the contention level, and present its Markov model for mathematical analysis. The proposed scheme is analyzed and its efficiency is validated by ns-2 simulation in respect to network throughput and energy consumption. Its performance is also compared with the standard and previous works, showing that it outperforms them for a whole range of arrival rate.

  • An Energy-Efficient Task Scheduling for Near-Realtime Systems with Execution Time Variation

    Takashi NAKADA  Tomoki HATANAKA  Hiroshi UEKI  Masanori HAYASHIKOSHI  Toru SHIMIZU  Hiroshi NAKAMURA  

     
    PAPER-Software System

      Pubricized:
    2017/06/26
      Vol:
    E100-D No:10
      Page(s):
    2493-2504

    Improving energy efficiency is critical for embedded systems in our rapidly evolving information society. Near real-time data processing tasks, such as multimedia streaming applications, exhibit a common fact that their deadline periods are longer than their input intervals due to buffering. In general, executing tasks at lower performance is more energy efficient. On the other hand, higher performance is necessary for huge tasks to meet their deadlines. To minimize the energy consumption while meeting deadlines strictly, adaptive task scheduling including dynamic performance mode selection is very important. In this work, we propose an energy efficient slack-based task scheduling algorithm for such tasks by adapting to task size variations and applying DVFS with the help of statistical analysis. We confirmed that our proposal can further reduce the energy consumption when compared to oracle frame-based scheduling.

  • Optimal Power Splitting and Power Allocation in EH-Enabled Multi-Link Multi-Antenna Relay Networks

    Shengyu LI  Wenjun XU  Zhihui LIU  Junyi WANG  Jiaru LIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/09
      Vol:
    E100-B No:8
      Page(s):
    1480-1488

    This paper studies the multi-link multi-antenna amplify-and-forward (AF) relay system, in which multiple source-destination pairs communicate with the aid of an energy harvesting (EH)-enabled relay and the relay utilizes the power splitting (PS) protocol to accomplish simultaneous EH and information forwarding (IF). Specifically, independent PS, i.e., allow each antenna to have an individual PS factor, and cooperative power allocation (PA) i.e., adaptively allocate the harvested energy to each channel, are proposed to increase the signal processing degrees of freedom and energy utilization. Our objective is to maximize the minimum rate of all source-destination pairs, i.e., the max-min rate, by jointly optimizing the PS and PA strategies. The optimization problem is first established for the ideal channel state information (CSI) model. To solve the formulated non-convex problem, the optimal forwarding matrix is derived and an auxiliary variable is introduced to remove the coupling of transmission rates in two slots, following which a bi-level iteration algorithm is proposed to determine the optimal PS and PA strategy by jointly utilizing the bisection and golden section methods. The proposal is then extended into the partial CSI model, and the final transmission rate for each source-destination pair is modified by treating the CSI error as random noise. With a similar analysis, it is proved that the proposed bi-level algorithm can also solve the joint PS and PA optimization problem in the partial CSI model. Simulation results show that the proposed algorithm works well in both ideal CSI and partial CSI models, and by means of independent PS and cooperative PA, the achieved max-min rate is greatly improved over existing non-EH-enabled and EH-enabled relay schemes, especially when the signal processing noise at the relay is large and the sources use quite different transmit powers.

  • Multi-Group Signature Scheme for Simultaneous Verification by Neighbor Services

    Kenta NOMURA  Masami MOHRI  Yoshiaki SHIRAISHI  Masakatu MORII  

     
    PAPER-Cryptographic Schemes

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1770-1779

    We focus on the construction of the digital signature scheme for local broadcast, which allows the devices with limited resources to securely transmit broadcast message. A multi-group authentication scheme that enables a node to authenticate its membership in multi verifiers by the sum of the secret keys has been proposed for limited resources. This paper presents a transformation which converts a multi-group authentication into a multi-group signature scheme. We show that the multi-group signature scheme converted by our transformation is existentially unforgeable against chosen message attacks (EUF-CMA secure) in the random oracle model if the multi-group authentication scheme is secure against impersonation under passive attacks (IMP-PA secure). In the multi-group signature scheme, a sender can sign a message by the secret keys which multiple certification authorities issue and the signature can validate the authenticity and integrity of the message to multiple verifiers. As a specific configuration example, we show the example in which the multi-group signature scheme by converting an error correcting code-based multi-group authentication scheme.

  • Fronthaul Constrained Coordinated Transmission in Cloud-Based 5G Radio Access Network: Energy Efficiency Perspective

    Ying SUN  Yang WANG  Yuqing ZHONG  

     
    PAPER-Network

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1343-1351

    The cloud radio access network (C-RAN) is embracing unprecedented popularity in the evolution of current RAN towards 5G. One of the essential benefits of C-RAN is facilitating cooperative transmission to enhance capacity and energy performances. In this paper, we argue that the conventional symmetric coordination in which all antennas participate in transmission does not necessarily lead to an energy efficient C-RAN. Further, the current assessments of energy consumption should be modified to match this shifted paradigm in network architecture. Towards this end, this paper proposes an asymmetric coordination scheme to optimize the energy efficiency of C-RAN. Specifically, asymmetric coordination is approximated and formulated as a joint antenna selection and power allocation problem, which is then solved by a proposed sequential-iterative algorithm. A modular power consumption model is also developed to convert the computational complexity of coordination into baseband power consumption. Simulations verify the performance benefits of our proposed asymmetric coordination in effectively enhancing system energy efficiency.

  • A Thin, Compact and Maintenance-Free Beacon Transmitter Operating from a 44-lux Photovoltaic Film Harvester

    Hiroyuki NAKAMOTO  Hong GAO  Atsushi MURAMATSU  

     
    PAPER

      Vol:
    E100-C No:6
      Page(s):
    584-591

    This paper presents a thin, compact beacon transmitter operating without needing battery replacement by using a photovoltaic (PV) film harvester. The beacon is formed of a power-control circuit (PCC) that can monitor small amounts of power from the harvester and properly control mode switching at low-power consumption. This leads to the realization of a maintenance-free beacon requiring no battery replacement. The beacon prototype is 55×20×2 mm in size and has a PV cell of 3 cm2. It allows a start-up operation from just 44-lux illuminance. The PV area required for the operation can be 1.7 times smaller than that of conventional beacons, thanks to the current saving with appropriate sequential control of the PCC. Since the beacon makes operation possible in emergency stairs, underground passages and other dark places, the application field for Internet of things (IoT) services can be expanded. Furthermore, a beacon equipped with a secondary battery (BSB: Beacon with Secondary Battery) can be configured by adding a charge-discharge power monitoring circuit. The BSB transmits an advertising packet during the daytime while charging surplus power, and works using the stored power during the night; this results in a continuous operation for one week with one transmission every 3 seconds even at 0-lux illuminance. Without developing a new radiofrequency chip or module, commercial low-power devices can be easily adjusted depending on the application by adding appropriate power-control circuits. We are convinced that this design scheme will be effective as a rapid design proposal for IoT services.

121-140hit(542hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.