Keyword Search Result

[Keyword] estimation(1398hit)

1-20hit(1398hit)

  • Multiuser Detection with Accurate Channel Estimation for Collided AIS Packets Open Access

    Kohei NOZAKI  Yuyuan CHANG  Kazuhiko FUKAWA  Daichi HIRAHARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E108-B No:2
      Page(s):
    152-163

    In a space-based automatic identification system (AIS), a satellite has a wide coverage area and thus can receive AIS signals from ships in the high seas. However, wide coverage can cause multiple AIS packets to collide with each other at the satellite receiver. Furthermore, transmitted packets are affected by channel parameters, such as Doppler shifts, channel impulse response, and propagation delay time, which are remarkably different in each packet because these parameters depend on the distance and relative speed between ships and the satellite. Therefore, these parameters should be estimated and used for multiuser detection to detect collided packets separately. Nevertheless, when the received power difference between packets or desired to undesired signal power ratio (DUR) is low, the accuracy of the channel parameter estimation is degraded so severely, such that multiuser detection cannot maintain sufficient bit error rate (BER) performance. To compensate for the reduced accuracy, this paper proposes a highly accurate channel estimation method. In addition to the conventional correlation-based channel estimation, the proposed method applies the quasi-Newton and least-squares methods to estimate Doppler frequency and channel impulse response, respectively. Regarding the propagation delay time, the conventional correlation-based channel estimation is repeated for improvement. Multiuser detection based on the Viterbi algorithm is performed using the estimated channel parameters. Computer simulations were conducted under the conditions of two collision packets and Rician fading, and the results show that the proposed method can significantly improve the accuracy of the channel estimation and BER performance than the conventional method.

  • VLSI Design and Implementation of ARS for Periods Estimation Open Access

    Takahiro SASAKI  Yukihiro KAMIYA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2024/06/11
      Vol:
    E108-C No:1
      Page(s):
    24-33

    This paper proposes two VLSI implementation approaches for periods estimation hardware of periodic signals. Digital signal processing is one of the important technologies, and to estimate periods of signals are widely used in many areas such as IoT, predictive maintenance, anomaly detection, health monitoring, and so on. This paper focuses on accumulation for real-time serial-to-parallel converter (ARS) which is a simple parameter estimation method for periodic signals. ARS is simple algorithm to estimate periods of periodic signals without complex instructions such as multiplier and division. However, this algorithm is implemented only on software, suitable hardware implementation methods are not clear. Therefore, this paper proposes two VLSI implementation methods called ARS-DFF and ARS-MEM. ARS-DFF is simple and fast implementation method, but hardware scale is large. ARS-MEM reduces hardware scale by introducing an SRAM macro cell. This paper also designs both approaches using SystemVerilog and evaluates VLSI implementation. According to our evaluation results, both proposed methods can reduce the power consumption to less than 1/1000 compared to the implementation on a microprocessor.

  • Scatterer Information Estimation Method by TD-SPT Using Numerical Data of Response Waveforms of Backward Transient Scattering Field Components Open Access

    Keiji GOTO  Toru KAWANO  Ryohei NAKAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2024/06/18
      Vol:
    E108-C No:1
      Page(s):
    1-15

    This paper presents a scatterer information estimation method for both E- and H-polarizations based on a time-domain saddle-point technique (TD-SPT). The method utilizes numerical data of the response waveforms of the reflected geometric optical ray (RGO) series, which constitute the backward transient scattering field components when a line source and an observation point are at the same location. A scatterer selected in the paper is a two-dimensional (2-D) coated cylinder. The three types of scatterer information are the relative permittivity of a coating medium layer and its thickness, and the outer radius of a coated cylinder. Specifically, the scatterer information estimation formulas are derived by applying the TD-SPT represented in RGO series to the amplitude intensity ratios (AIRs) of adjacent RGO components. By focusing on the analytical results that the AIRs are independent of polarization, we analytically clarify that all the estimation formulas derived here denote polarization independence. The estimates are obtained by substituting numerical data of the peaks of the response waveforms of the RGO components and their arrival times, as well as numerical parameters of a pulse source, into the estimation formulas and performing iterative calculations. We derive approximations to the estimation errors that are useful in quantitatively evaluating the errors of the estimates. The effectiveness of the scatterer information estimation method is substantiated by comparing the estimates with the set values. The polarization independence of the estimation formulas is validated numerically by contrasting the estimates for E- and H-polarizations. The estimation errors are discussed using the approximations to the errors of the estimates when a line source and an observation point are at the same location. Thereafter, the discrepancies that arise between the estimation errors when a line source and an observation point are at different locations are discussed. The methods to control the estimation accuracy and the computational time are also discussed.

  • Strategies for DOA-DNN Estimation Accuracy Improvement at Low and High SNRs Open Access

    Daniel Akira ANDO  Toshihiko NISHIMURA  Takanori SATO  Takeo OHGANE  Yasutaka OGAWA  Junichiro HAGIWARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E108-B No:1
      Page(s):
    94-108

    Implementation of several wireless applications such as radar systems and source localization is possible with direction of arrival (DOA) estimation, an array signal processing technique. In the past, we proposed a DOA estimation method using deep neural networks (DNNs), which presented very good performance compared to the traditional root multiple signal classification (root-MUSIC) algorithm when the number of radio wave sources is two. However, once three radio wave sources are considered, the performance of that proposed DNN decays especially at low and high signal-to-noise ratios (SNRs). In this paper, mainly focusing on the case of three sources, we present two additional strategies based on our previous method and capable of dealing with each SNR region. The first, which supports DOA estimation at low SNRs, is a scheme that makes use of principal component analysis (PCA). By representing the DNN input data in a lower dimension with PCA, it is believed that the noise corrupting the data is greatly reduced, which leads to improved performance at such SNRs. The second, which supports DOA estimation at high SNRs, is a scheme where several DNNs specialized in radio waves with close DOA are accordingly selected to produce a more reliable angular spectrum grid in such circumstances. Finally, in order to merge both ideas together, we use our previously proposed SNR estimation technique, with which appropriate selection between the two schemes mentioned above is performed. We have verified the superiority of our methods over root-MUSIC and our previous technique through computer simulation when the number of sources is three. In addition, brief discussion on the performance of these proposed methods for the case of higher number of sources is also given.

  • Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation Open Access

    Kenta YUMOTO  Ami YAMAMOTO  Takahiro MATSUDA  Junichi HIGUCHI  Takeshi KODAMA  Hitoshi UENO  Takashi SHIRAISHI  

     
    PAPER-Network

      Vol:
    E108-B No:1
      Page(s):
    72-84

    In cloud computing environments with virtual machines (VMs), we propose a VM placement (VMP) method based on traffic estimation to balance loads due to traffic volumes within physical hosts (PHs) and passing through physical network interface cards (NICs). We refer to a VM or a NIC in a cloud environment as node, and define a flow as a pair of nodes. To balance loads for both PHs and NICs, it is necessary to measure flow traffic volumes because each VM may connect to other VMs in different PHs. However, this is not a cost-effective way to measure flow traffic volumes because the number of flows increases with O(N2) for the number N of nodes. To solve this problem, we propose a VMP method using a compressed sensing (CS)-based traffic estimator. In the proposed method, the relationship between flow traffic volumes and node traffic volumes is formulated by a system of underdetermined linear equations. The flow traffic volumes are estimated with CS from the measured node traffic volumes. From the estimated flow traffic volumes, each VM is assigned to the optimal host for load balancing by solving a mixed-integer optimization problem.

  • Single-Shot Spectral Sensor Utilizing Multilayer-Type Pixel-Scale Filter Array Open Access

    Yasuo OHTERA  

     
    INVITED PAPER

      Pubricized:
    2024/02/22
      Vol:
    E107-C No:11
      Page(s):
    441-449

    We report on a method for reconstructing the spectrum of incident light from a single image captured by a snapshot multispectral camera. The camera has a dielectric multilayer multispectral filter array (MSFA) integrated onto a CMOS image sensor. Sparse estimation algorithm was applied to reconstruct the spectrum. Using Gaussian functions with various bandwidths and central wavelengths as the bases matrix, the algorithm has been shown to be highly accurate for estimating the spectra of both narrowband monochromatic and broadband fluorescent light emitting diodes (LEDs), regardless of the wavelength band.

  • State-Space Realization of Adaptive IIR Notch Digital Filters with Unbiased Parameter-Estimation Open Access

    Yoichi HINAMOTO  Shotaro NISHIMURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2024/07/09
      Vol:
    E107-A No:11
      Page(s):
    1650-1657

    A state-space approach for adaptive second-order IIR notch digital filters is explored. A simplified iterative algorithm is derived from the gradient-descent method to minimize the mean-squared output of an adaptive notch digital filter. The stability and parameter-estimation bias are then analyzed by employing a first-order linear dynamical system. As a consequence, it is clarified that the resulting parameter estimate is unbiased. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the adaptive state-space notch digital filter and bias analysis of parameter estimation.

  • Cascaded Deep Neural Network for Off-Grid Direction-of-Arrival Estimation Open Access

    Huafei WANG  Xianpeng WANG  Xiang LAN  Ting SU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E107-B No:10
      Page(s):
    633-644

    Using deep learning (DL) to achieve direction-of-arrival (DOA) estimation is an open and meaningful exploration. Existing DL-based methods achieve DOA estimation by spectrum regression or multi-label classification task. While, both of them face the problem of off-grid errors. In this paper, we proposed a cascaded deep neural network (DNN) framework named as off-grid network (OGNet) to provide accurate DOA estimation in the case of off-grid. The OGNet is composed of an autoencoder consisted by fully connected (FC) layers and a deep convolutional neural network (CNN) with 2-dimensional convolutional layers. In the proposed OGNet, the off-grid error is modeled into labels to achieve off-grid DOA estimation based on its sparsity. As compared to the state-of-the-art grid-based methods, the OGNet shows advantages in terms of precision and resolution. The effectiveness and superiority of the OGNet are demonstrated by extensive simulation experiments in different experimental conditions.

  • Multi-Scale Contrastive Learning for Human Pose Estimation Open Access

    Wenxia BAO  An LIN  Hua HUANG  Xianjun YANG  Hemu CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/06/17
      Vol:
    E107-D No:10
      Page(s):
    1332-1341

    Recent years have seen remarkable progress in human pose estimation. However, manual annotation of keypoints remains tedious and imprecise. To alleviate this problem, this paper proposes a novel method called Multi-Scale Contrastive Learning (MSCL). This method uses a siamese network structure with upper and lower branches that capture diffirent views of the same image. Each branch uses a backbone network to extract image representations, employing multi-scale feature vectors to capture information. These feature vectors are then passed through an enhanced feature pyramid for fusion, producing more robust feature representations. The feature vectors are then further encoded by mapping and prediction heads to predict the feature vector of another view. Using negative cosine similarity between vectors as a loss function, the backbone network is pre-trained on a large-scale unlabeled dataset, enhancing its capacity to extract visual representations. Finally, transfer learning is performed on a small amount of labelled data for the pose estimation task. Experiments on COCO datasets show significant improvements in Average Precision (AP) of 1.8%, 0.9%, and 1.2% with 1%, 5%, and 10% labelled data on COCO. In addition, the Percentage of Correct Keypoints (PCK) improves by 0.5% on MPII&AIC, outperforming mainstream contrastive learning methods.

  • Greedy Selection of Sensors for Linear Bayesian Estimation under Correlated Noise Open Access

    Yoon Hak KIM  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:9
      Page(s):
    1274-1277

    We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.

  • Method for Estimating Scatterer Information from the Response Waveform of a Backward Transient Scattering Field Using TD-SPT Open Access

    Keiji GOTO  Toru KAWANO  Munetoshi IWAKIRI  Tsubasa KAWAKAMI  Kazuki NAKAZAWA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2024/01/23
      Vol:
    E107-C No:8
      Page(s):
    210-222

    This paper proposes a scatterer information estimation method using numerical data for the response waveform of a backward transient scattering field for both E- and H-polarizations when a two-dimensional (2-D) coated metal cylinder is selected as a scatterer. It is assumed that a line source and an observation point are placed at different locations. The four types of scatterer information covered in this paper are the relative permittivity of a surrounding medium, the relative permittivity of a coating medium layer and its thickness, and the radius of a coated metal cylinder. Specifically, a time-domain saddle-point technique (TD-SPT) is used to derive scatterer information estimation formulae from the amplitude intensity ratios (AIRs) of adjacent backward transient scattering field components. The estimates are obtained by substituting the numerical data of the response waveforms of the backward transient scattering field components into the estimation formulae and performing iterative calculations. Furthermore, a minimum thickness of a coating medium layer for which the estimation method is valid is derived, and two kinds of applicable conditions for the estimation method are proposed. The effectiveness of the scatterer information estimation method is verified by comparing the estimates with the set values. The noise tolerance and convergence characteristics of the estimation method and the method of controlling the estimation accuracy are also discussed.

  • Extending Binary Neural Networks to Bayesian Neural Networks with Probabilistic Interpretation of Binary Weights Open Access

    Taisei SAITO  Kota ANDO  Tetsuya ASAI  

     
    PAPER

      Pubricized:
    2024/04/17
      Vol:
    E107-D No:8
      Page(s):
    949-957

    Neural networks (NNs) fail to perform well or make excessive predictions when predicting out-of-distribution or unseen datasets. In contrast, Bayesian neural networks (BNNs) can quantify the uncertainty of their inference to solve this problem. Nevertheless, BNNs have not been widely adopted owing to their increased memory and computational cost. In this study, we propose a novel approach to extend binary neural networks by introducing a probabilistic interpretation of binary weights, effectively converting them into BNNs. The proposed approach can reduce the number of weights by half compared to the conventional method. A comprehensive comparative analysis with established methods like Monte Carlo dropout and Bayes by backprop was performed to assess the performance and capabilities of our proposed technique in terms of accuracy and capturing uncertainty. Through this analysis, we aim to provide insights into the advantages of this Bayesian extension.

  • A Frequency Estimation Algorithm for High Precision Monitoring of Significant Space Targets Open Access

    Ze Fu GAO  Wen Ge YANG  Yi Wen JIAO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:7
      Page(s):
    1058-1061

    Space is becoming increasingly congested and contested, which calls for effective means to conduct effective monitoring of high-value space assets, especially in Space Situational Awareness (SSA) missions, while there are imperfections in existing methods and corresponding algorithms. To overcome such a problem, this letter proposes an algorithm for accurate Connected Element Interferometry (CEI) in SSA based on more interpolation information and iterations. Simulation results show that: (i) after iterations, the estimated asymptotic variance of the proposed method can basically achieve uniform convergence, and the ratio of it to ACRB is 1.00235 in δ0 ∈ [-0.5, 0.5], which is closer to 1 than the current best AM algorithms; (ii) In the interval of SNR ∈ [-14dB, 0dB], the estimation error of the proposed algorithm decreases significantly, which is basically comparable to CRLB (maintains at 1.236 times). The research of this letter could play a significant role in effective monitoring and high-precision tracking and measurement with significant space targets during futuristic SSA missions.

  • A High-Performance Antenna Array Signal Processing Method in Deep Space Communication Open Access

    Yi Wen JIAO  Ze Fu GAO  Wen Ge YANG  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/09/25
      Vol:
    E107-A No:7
      Page(s):
    1062-1065

    In future deep space communication missions, VLBI (Very Long Baseline Interferometry) based on antenna array technology remains a critical detection method, which urgently requires the improvement of synthesis performance for antenna array signals. Considering this, focusing on optimizing the traditional antenna grouping method applied in the phase estimation algorithm, this letter proposes a “L/2 to L/2” antenna grouping method based on the maximum correlation signal-to-noise ratio (SNR). Following this idea, a phase difference estimation algorithm named “Couple” is presented. Theoretical analysis and simulation verification illustrate that: when ρ < -10dB, the proposed “Couple” has the highest performance; increasing the number of antennas can significantly improve its synthetic loss performance and robustness. The research of this letter indicates a promising potential in supporting the rising deep space exploration and communication missions.

  • 2D Human Skeleton Action Recognition Based on Depth Estimation Open Access

    Lei WANG  Shanmin YANG  Jianwei ZHANG  Song GU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/02/27
      Vol:
    E107-D No:7
      Page(s):
    869-877

    Human action recognition (HAR) exhibits limited accuracy in video surveillance due to the 2D information captured with monocular cameras. To address the problem, a depth estimation-based human skeleton action recognition method (SARDE) is proposed in this study, with the aim of transforming 2D human action data into 3D format to dig hidden action clues in the 2D data. SARDE comprises two tasks, i.e., human skeleton action recognition and monocular depth estimation. The two tasks are integrated in a multi-task manner in end-to-end training to comprehensively utilize the correlation between action recognition and depth estimation by sharing parameters to learn the depth features effectively for human action recognition. In this study, graph-structured networks with inception blocks and skip connections are investigated for depth estimation. The experimental results verify the effectiveness and superiority of the proposed method in skeleton action recognition that the method reaches state-of-the-art on the datasets.

  • Estimation of Drone Payloads Using Millimeter-Wave Fast-Chirp-Modulation MIMO Radar Open Access

    Kenshi OGAWA  Masashi KUROSAKI  Ryohei NAKAMURA  

     
    PAPER-Sensing

      Vol:
    E107-B No:5
      Page(s):
    419-428

    With the development of drone technology, concerns have arisen about the possibility of drones being equipped with threat payloads for terrorism and other crimes. A drone detection system that can detect drones carrying payloads is needed. A drone’s propeller rotation frequency increases with payload weight. Therefore, a method for estimating propeller rotation frequency will effectively detect the presence or absence of a payload and its weight. In this paper, we propose a method for classifying the payload weight of a drone by estimating its propeller rotation frequency from radar images obtained using a millimeter-wave fast-chirp-modulation multiple-input and multiple-output (MIMO) radar. For each drone model, the proposed method requires a pre-prepared reference dataset that establishes the relationships between the payload weight and propeller rotation frequency. Two experimental measurement cases were conducted to investigate the effectiveness of our proposal. In case 1, we assessed four drones (DJI Matrice 600, DJI Phantom 3, DJI Mavic Pro, and DJI Mavic Mini) to determine whether the propeller rotation frequency of any drone could be correctly estimated. In case 2, experiments were conducted on a hovering Phantom 3 drone with several payloads in a stable position for calculating the accuracy of the payload weight classification. The experimental results indicated that the proposed method could estimate the propeller rotation frequency of any drone and classify payloads in a 250 g step with high accuracy.

  • Effects of Electromagnet Interference on Speed and Position Estimations of Sensorless SPMSM Open Access

    Yuanhe XUE  Wei YAN  Xuan LIU  Mengxia ZHOU  Yang ZHAO  Hao MA  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2023/11/10
      Vol:
    E107-C No:5
      Page(s):
    124-131

    Model-based sensorless control of permanent magnet synchronous motor (PMSM) is promising for high-speed operation to estimate motor state, which is the speed and the position of the rotor, via electric signals of the stator, beside the inevitable fact that estimation accuracy is degraded by electromagnet interference (EMI) from switching devices of the converter. In this paper, the simulation system based on Luenberger observer and phase-locked loop (PLL) has been established, analyzing impacts of EMI on motor state estimations theoretically, exploring influences of EMI with different cutoff frequency, rated speeds, frequencies and amplitudes. The results show that Luenberger observer and PLL have strong immunity, which enable PMSM can still operate stably even under certain degrees of interference. EMI produces sideband harmonics that enlarge pulsation errors of speed and position estimations. Additionally, estimation errors are positively correlated with cutoff frequency of low-pass filter and the amplitude of EMI, and negatively correlated with rated speed of the motor and the frequency of EMI.  When the frequency is too high, its effects on motor state estimations are negligible. This work contributes to the comprehensive understanding of how EMI affects motor state estimations, which further enhances practical application of sensorless PMSM.

  • Joint DOA and DOD Estimation Using KR-MUSIC for Overloaded Target in Bistatic MIMO Radars Open Access

    Chih-Chang SHEN  Jia-Sheng LI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/08/07
      Vol:
    E107-A No:4
      Page(s):
    675-679

    This letter deals with the joint direction of arrival and direction of departure estimation problem for overloaded target in bistatic multiple-input multiple-output radar system. In order to achieve the purpose of effective estimation, the presented Khatri-Rao (KR) MUSIC estimator with the ability to handle overloaded targets mainly combines the subspace characteristics of the target reflected wave signal and the KR product based on the array response. This letter also presents a computationally efficient KR noise subspace projection matrix estimation technique to reduce the computational load due to perform high-dimensional singular value decomposition. Finally, the effectiveness of the proposed method is verified by computer simulation.

  • Meta-Bound on Lower Bounds of Bayes Risk in Parameter Estimation

    Shota SAITO  

     
    PAPER-Estimation

      Pubricized:
    2023/08/09
      Vol:
    E107-A No:3
      Page(s):
    503-509

    Information-theoretic lower bounds of the Bayes risk have been investigated for a problem of parameter estimation in a Bayesian setting. Previous studies have proven the lower bound of the Bayes risk in a different manner and characterized the lower bound via different quantities such as mutual information, Sibson's α-mutual information, f-divergence, and Csiszár's f-informativity. In this paper, we introduce an inequality called a “meta-bound for lower bounds of the Bayes risk” and show that the previous results can be derived from this inequality.

  • Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem

    Jun SUZUKI  

     
    PAPER-Quantum Information Theory

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:3
      Page(s):
    510-518

    In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum logarithmic derivative bounds.

1-20hit(1398hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.