Keyword Search Result

[Keyword] image rejection(19hit)

1-19hit
  • A 6th-Order Quadrature Bandpass Delta Sigma AD Modulator Using Dynamic Amplifier and Noise Coupling SAR Quantizer

    Chunhui PAN  Hao SAN  

     
    PAPER

      Vol:
    E102-A No:3
      Page(s):
    507-517

    This paper presents a 6th-order quadrature bandpass delta sigma AD modulator (QBPDSM) with 2nd-order image rejection using dynamic amplifier and noise coupling (NC) SAR quantizer embedded by passive adder for the application of wireless communication system. A novel complex integrator using dynamic amplifier is proposed to improve the energy efficiency of the QBPDSM. The NC SAR quantizer can realize an additional 2nd-order noise shaping and 2nd-order image rejection by the digital domain noise coupling technique. As a result, the 6th-order QBPDSM with 2nd-order image rejection is realized by two complex integrators using dynamic amplifier and the NC SAR quantizer. The SPICE simulation results demonstrate the feasibility of the proposed QBPDSM in 90nm CMOS technology. Simulated SNDR of 76.30dB is realized while a sinusoid -3.25dBFS input is sampled at 33.3MS/s and the bandwidth of 2.083MHz (OSR=8) is achieved. The total power consumption in the modulator is 6.74mW while the supply voltage is 1.2V.

  • A 1024-QAM Capable WLAN Receiver with -56.3dB Image Rejection Ratio Using Self-Calibration Technique

    Shusuke KAWAI  Toshiyuki YAMAGISHI  Yosuke HAGIWARA  Shigehito SAIGUSA  Ichiro SETO  Shoji OTAKA  Shuichi ITO  

     
    PAPER

      Vol:
    E101-C No:7
      Page(s):
    457-463

    This paper presents a 1024-QAM OFDM signal capable WLAN receiver in 65nm CMOS technology. Thermal noise-based IQ frequency-independent mismatch correction and IQ frequency-dependent mismatch correction with baseband loopback are proposed for the self-calibration in the receiver. The measured image rejection ratio of the self-calibration is -56.3dB. The receiver achieves the extremely low EVM of -37.1dB even with wide channel bandwidth of 80MHz and has the ability to receive the 1024-QAM signal. The result indicates that the receiver is extendable for the 802.11ax compliant receiver that supports a higher density modulation scheme of MIMO.

  • An (N+N2)-Mixer Architecture for a High-Image-Rejection Wireless Receiver with an N-Phase Active Complex Filter

    Mamoru UGAJIN  Takuya SHINDO  Tsuneo TSUKAHARA  Takefumi HIRAGURI  

     
    PAPER-Circuit Theory

      Vol:
    E100-A No:4
      Page(s):
    1008-1014

    A high-image-rejection wireless receiver with an N-phase active RC complex filter is proposed and analyzed. Signal analysis shows that the double-conversion receiver with (N+N2) mixers corrects the gain and phase mismatches of the adjacent image. Monte Carlo simulations evaluate the relation between image-rejection performances and the dispersions of device parameters for the double-conversion wireless receiver. The Monte Carlo simulations show that the image rejection ratio of the adjacent image depends almost only on R and C mismatches in the complex filter.

  • False Image Suppression in Two-Dimensional Shape Estimates of a Walking Human Using Multiple Ultra-Wideband Doppler Radar Interferometers

    Hiroki YAMAZAKI  Takuya SAKAMOTO  Hirofumi TAKI  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E99-B No:1
      Page(s):
    134-142

    Microwave systems have a number of promising applications in surveillance and monitoring systems. The main advantage of microwave systems is their ability to detect targets at distance under adverse conditions such as dim, smoky, and humid environments. Specifically, the wide bandwidth of ultra-wideband radar enables high range resolution. In a previous study, we proposed an accurate shape estimation algorithm for multiple targets using multiple ultra-wideband Doppler interferometers. However, this algorithm produces false image artifacts under conditions with severe interference. The present paper proposes a technique to suppress such false images by detecting inconsistent combinations of the radial velocity and time derivative of image positions. We study the performance of the proposed method through numerical simulations of a two-dimensional section of a moving human body, and demonstrate the remarkable performance of the proposed method in suppressing false image artifacts in many scenarios.

  • Phase and Gain Imbalance Compensation in Low-IF Receivers

    Teruji IDE  Takeo FUJII  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    211-223

    In this paper, we present a modified image rejection method that uses imbalance compensation techniques for phase and gain in low-intermediate frequency (IF) software-defined radio (SDR) receivers. In low-IF receivers, the image frequency signal interferes with the desired signal owing to the phase and gain imbalances caused by analog devices. Thus, it is difficult to achieve the required image rejection ratio (IRR) of over 60dB without compensation. To solve this problem, we present modified blind compensation techniques based on digital signal processing using a feedback control loop with a practical computation process. The modified method can reduce the complexity when a hardware logic circuit is used, like an FPGA. The simulation and experimental results verify that the modified method achieves an IRR greater than 50-60dB for both the carrier and the modulated waves.

  • Pedestrian Imaging Using UWB Doppler Radar Interferometry

    Kenshi SAHO  Takuya SAKAMOTO  Toru SATO  Kenichi INOUE  Takeshi FUKUDA  

     
    PAPER-Sensing

      Vol:
    E96-B No:2
      Page(s):
    613-623

    The imaging of humans using radar is promising for surveillance systems. Although conventional radar systems detect the presence or position of intruders, it is difficult to acquire shape and motion details because the resolution is insufficient. This paper presents a high-resolution human imaging algorithm for an ultra-wideband (UWB) Doppler radar. The proposed algorithm estimates three-dimensional human images using interferometry and, using velocity information, rejects false images created by the interference of body parts. Experiments verify that our proposed algorithm achieves adequate pedestrian imaging. In addition, accurate shape and motion parameters are extracted from the estimated images.

  • RF Front-End and Complex BPF for Reconfigurable Low-IF Receiver

    Hsiao-Chin CHEN  Shu-Wei CHANG  Bo-Rong TU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:2
      Page(s):
    251-261

    A LNA, an RF front-end and a 6th–order complex BPF for reconfigurable low-IF receivers are demonstrated in this work. Due to the noise cancellation, the two-stage LNA presents a low NF of 2.8 to 3.3 dB from 0.8 to 6 GHz. Moreover, the LNA delivers two kinds of gain curves with IIP3 of -2.6 dBm by employing the capacitive degeneration and the resistive gain-curve shaping in the second stage. The flicker noise corner frequency of the down-converter has been considered and the measured fC of the RF front-end is 200 kHz. The RF front-end also provides two kinds of gain curves. For the low-frequency mode, the conversion gain is 28.831.1 dB from 800 MHz to 2.4 GHz. For the high-frequency mode, the conversion gain is 26.827.4 dB from 3 to 5 GHz. The complex BPF is realized with gm-C LPFs by shifting the low-pass frequency response. With variable transconductances and capacitors, a fixed ratio of the centre frequency to the bandwidth (2) is achieved by varying the bandwidth and the centre frequency of the LPF simultaneously. The complex BPF has a variable bandwidth from 200 kHz to 6.4 MHz while achieving an image rejection of 44 dB.

  • Design of a Direct Sampling Mixer with a Complex Coefficient Transfer Function

    Yohei MORISHITA  Noriaki SAITO  Koji TAKINAMI  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E95-C No:6
      Page(s):
    999-1007

    The Direct Sampling Mixer (DSM) with a complex coefficient transfer function is demonstrated. The operation theory and the detail design methodology are discussed for the high order complex DSM, which can achieve large image rejection ratio by introducing the attenuation pole at the image frequency band. The proposed architecture was fabricated in a 65 nm CMOS process. The measured results agree well with the theoretical calculation, which proves the validity of the proposed architecture and the design methodology. By using the proposed design method, it will be possible for circuit designers to design the DSM with large image rejection ratio without repeated lengthy simulations.

  • Noise-Coupled Image Rejection Architecture of Complex Bandpass ΔΣAD Modulator

    Hao SAN  Haruo KOBAYASHI  

     
    PAPER

      Vol:
    E93-A No:2
      Page(s):
    390-394

    This paper proposes a new realization technique of image rejection function by noise-coupling architecture, which is used for a complex bandpass ΔΣAD modulator. The complex bandpass ΔΣAD modulator processes just input I and Q signals, not image signals, and the AD conversion can be realized with low power dissipation. It realizes an asymmetric noise-shaped spectra, which is desirable for such low-IF receiver applications. However, the performance of the complex bandpass ΔΣAD modulator suffers from the mismatch between internal analog I and Q paths. I/Q path mismatch causes an image signal, and the quantization noise of the mirror image band aliases into the desired signal band, which degrades the SQNDR (Signal to Quantization Noise and Distortion Ratio) of the modulator. In our proposed modulator architecture, an extra notch for image rejection is realized by noise-coupled topology. We just add some passive capacitors and switches to the modulator; the additional integrator circuit composed of an operational amplifier in the conventional image rejection realization is not necessary. Therefore, the performance of the complex modulator can be effectively raised without additional power dissipation. We have performed simulation with MATLAB to confirm the validity of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of image-rejection effectively, and improve the SQNDR of the complex bandpass ΔΣAD modulator.

  • 4-GHz Inter-Stage-Matched SiGe HBT LNA with Gain Enhancement and No Noise Figure Degradation

    Chinchun MENG  Jhin-Ci JHONG  

     
    LETTER

      Vol:
    E90-A No:2
      Page(s):
    398-400

    An effective way to boost power gain without noise figure degradation in a cascode low noise amplifier (LNA) is demonstrated at 4 GHz using 0.35 µm SiGe HBT technology. This approach maintains the same current consumption because a low-pass π-type LC matching network is inserted in the inter-stage of a conventional cascode LNA. 5 dB gain enhancement with no noise figure degradation at 4 GHz is observed in the SiGe HBT LNA with inter-stage matching.

  • A 5.2 GHz 47 dB Image Rejection Double Quadrature Gilbert Downconverter Using 0.35 µm SiGe HBT Technology

    Tzung-Han WU  Chinchun MENG  Tse-Hung WU  Guo-Wei HUANG  

     
    LETTER

      Vol:
    E90-A No:2
      Page(s):
    401-405

    A 5.2 GHz 1 dB conversion gain, IP1 dB = -19 dBm and IIP3= -9 dBm double quadrature Gilbert downconversion mixer with polyphase filters is demonstrated by using 0.35 µm SiGe HBT technology. The image rejection ratio is better than 47 dB when LO=5.17 GHz and IF is in the range of 15 MHz to 45 MHz. The Gilbert downconverter has four-stage RC-CR IF polyphase filters for the image rejection. Polyphase filters are also used to generate LO and RF quadrature signals around 5 GHz in the double quadrature downconverter.

  • An Image Rejection Mixer with AI-Based Improved Performance for WCDMA Applications

    Yuji KASAI  Kiyoshi MIYASHITA  Hidenori SAKANASHI  Eiichi TAKAHASHI  Masaya IWATA  Masahiro MURAKAWA  Kiyoshi WATANABE  Yukihiro UEDA  Kaoru TAKASUKA  Tetsuya HIGUCHI  

     
    PAPER

      Vol:
    E89-C No:6
      Page(s):
    717-724

    This paper proposes the combination of adjustable architecture and parameter optimization software, employing a method based on artificial intelligence (AI), to realize an image rejection mixer (IRM) that can enhance its image rejection ratio within a short period of time. The main components of the IRM are 6 Gilbert-cell multipliers. The tail current of each multiplier is adjusted by the optimization software, and the gain and phase characteristics are optimized. This adjustment is conventionally extremely difficult because the 6 tail currents to be adjusted simultaneously are mutually interdependent. In order to execute this adjustment efficiently, we employed a Genetic Algorithm (GA) that is a robust search algorithm that can find optimal parameter settings in a short time. We have successfully developed an IRM chip that has a performance of 71 dB and is suitable for single-chip integration with WCDMA applications.

  • Design Considerations for RC Polyphase Filters with Simultaneously Equal Ripple Both in Stopband and Passband

    Hiroaki TANABE  Hiroshi TANIMOTO  

     
    LETTER

      Vol:
    E89-A No:2
      Page(s):
    461-464

    This paper describes a numerical design procedure of element values of RC polyphase filters with equal minima in stopband and equal ripple in passband. Determination of element values of RC polyphase filters with equal-ripple characteristic have not been solved to the best knowledge of the authors. There found a paper tackling with the problem; however, it can only give sub-optimal solutions via numerical calculation [3]. We propose a numerical element value design procedure for RC polyphase filters with equi-ripple gain in both stopband and passband by using the coefficient matching method. Some design examples are given.

  • Frequency-Controllable Image Rejection Down CMOS Mixer

    Tuan-Anh PHAN  Chang-Wan KIM  Yun-A SHIM  Sang-Gug LEE  

     
    LETTER-Devices

      Vol:
    E88-C No:12
      Page(s):
    2322-2324

    This paper presents a frequency-controllable image rejection mixer in heterodyne architecture for 2 GHz applications based on TSMC 0.18 µm CMOS technology. The designed mixer uses a notch filter to suppress the image signal and allows precise tuning the image frequencies. An image rejection of 20-70 dB is obtained in a 200 MHz of bandwidth. The simulation results show single-side band (SSB) NF is improved 3.7 dB, the voltage conversion gain of 14.7 dB, improved by more than 4 dB. The circuit operates at the supply voltage of 1.8 V, and dissipates 11.34 mW.

  • A 270 GHz-Band Planer Type MMIC Image Rejection SIS Mixer

    Morishige HIEDA  Tetsuya TAKAMI  Tadashi TAKAGI  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1458-1463

    A 270 GHz-band image rejection SIS mixer is developed. This mixer employs planer type image rejection configuration and is integrated into a single-chip as in MMIC's at microwave frequency. In order to use sapphire substrate at 270 GHz-band, CPW transmission lines are selected to realize 50-70Ω characteristic impedances. The fabricated MMIC SIS mixer performs 12-24 dB image rejection ratio with 450-780 K noise temperature at 270 GHz.

  • A 1-V 2-GHz RF Receiver with 49 dB of Image Rejection in CMOS/SIMOX

    Mamoru UGAJIN  Junichi KODATE  Tsuneo TSUKAHARA  

     
    PAPER

      Vol:
    E85-A No:2
      Page(s):
    293-299

    A 1-V 2-GHz receiver that exhibits an image rejection of 49 dB is described. It consists of a low-noise amplifier, a quadrature mixer and on-chip polyphase filters, and was fabricated by 0.2-µm fully depleted CMOS/SIMOX technology. The quadrature mixer employs an LC-tuned folded structure with a common RF input for I and Q channels. This enables 1-V operation, suppresses phase errors in LO signals, and improves the image-rejection performance by about 15-dB compared to a conventional quadrature architecture. The current source of the single-to-balance converter at the mixer input consists of a transistor and an LC tank in a cascode configuration. This enhances its output impedance and improves its common-mode-rejection ratio (CMRR) and the IIP2 characteristics of the receiver. The chip consumes 12 mW with 1-V power supply. The receiver provides an NF of 10 dB with an IIP3 of -15.8 dBm and IIP2 of 12.3 dBm.

  • An Integrable Image Rejection System Using a Complex Analog Filter with Variable Bandwidth and Center Frequency Characteristics

    Cosy MUTO  Hiroshi HOSHIKAWA  

     
    PAPER

      Vol:
    E85-A No:2
      Page(s):
    309-315

    In this paper, we discuss an IF image rejection system with variable bandwidth and center frequency. The system is consists of a pair of frequency mixers multiplied by the complex sinusoid and a complex analog filter. By employing the complex leapfrog structure using OTA-C configuration and the frequency transformation from the normalized LPF, the proposed system is capable of variable bandwidth and center frequency characteristics. SPICE simulations result more than 43 [dB] image rejection is achieved for 6 [kHz] and 12 [kHz] bandwidths at 50 [kHz] IF.

  • Broadband and Flexible Receiver Architecture for Software Defined Radio Terminal Using Direct Conversion and Low-IF Principle

    Hiroshi TSURUMI  Hiroshi YOSHIDA  Shoji OTAKA  Hiroshi TANIMOTO  Yasuo SUZUKI  

     
    PAPER

      Vol:
    E83-B No:6
      Page(s):
    1246-1253

    A broadband and flexible receiver architecture is investigated for the handheld software defined radio (SDR). The proposed SDR architecture is based on the direct conversion and low intermediate frequency (low-IF) principle with digital channel filtering, which provides the receiver with flexibility for the multi-standard application. This architecture also enables analog-to-digital converter activating essentially in baseband or low frequency so that the clock jitter, which serves as an important subject in the well-known IF sampling method, can be reduced. Basic performance of the proposed architecture has been confirmed by the experimental model.

  • A New Extended Frequency Transformation for Complex Analog Filter Design

    Cosy MUTO  

     
    PAPER

      Vol:
    E83-A No:6
      Page(s):
    934-940

    In this paper, a new frequency transformation for complex analog filter design which is suitable for integration is discussed. Arbitrary specified passband and stopband edges are easily transformed into those of the normalized LPF by solving simultaneous equations with four unknowns. Different from previous methods, the proposed transformation provides better performance in active realization of complex filters.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.