Author Search Result

[Author] Wei LI(85hit)

21-40hit(85hit)

  • A Visual Inspection System for Accurate Positioning of Railway Fastener

    Jianwei LIU  Hongli LIU  Xuefeng NI  Ziji MA  Chao WANG  Xun SHAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2020/07/17
      Vol:
    E103-D No:10
      Page(s):
    2208-2215

    Automatic disassembly of railway fasteners is of great significance for improving the efficiency of replacing rails. The accurate positioning of fastener is the key factor to realize automatic disassembling. However, most of the existing literature mainly focuses on fastener region positioning and the literature on accurate positioning of fasteners is scarce. Therefore, this paper constructed a visual inspection system for accurate positioning of fastener (VISP). At first, VISP acquires railway image by image acquisition subsystem, and then the subimage of fastener can be obtained by coarse-to-fine method. Subsequently, the accurate positioning of fasteners can be completed by three steps, including contrast enhancement, binarization and spike region extraction. The validity and robustness of the VISP were verified by vast experiments. The results show that VISP has competitive performance for accurate positioning of fasteners. The single positioning time is about 260ms, and the average positioning accuracy is above 90%. Thus, it is with theoretical interest and potential industrial application.

  • A Monolithic Sub-sampling PLL based 6–18 GHz Frequency Synthesizer for C, X, Ku Band Communication

    Hanchao ZHOU  Ning ZHU  Wei LI  Zibo ZHOU  Ning LI  Junyan REN  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:1
      Page(s):
    16-27

    A monolithic frequency synthesizer with wide tuning range, low phase noise and spurs was realized in 0.13,$mu$m CMOS technology. It consists of an analog PLL, a harmonic-rejection mixer and injection-locked frequency doublers to cover the whole 6--18,GHz frequency range. To achieve a low phase noise performance, a sub-sampling PLL with non-dividers was employed. The synthesizer can achieve phase noise $-$113.7,dBc/Hz@100,kHz in the best case and the reference spur is below $-$60,dBc. The core of the synthesizer consumes about 110,mA*1.2,V.

  • Thermal Effect Simulation of GaN HFETs under CW and Pulsed Operation

    Jianfeng XU  Wen-Yan YIN  Junfa MAO  Le-Wei LI  

     
    LETTER-Electronic Components

      Vol:
    E90-C No:1
      Page(s):
    204-207

    In this paper, the thermal characteristic of the GaN HFETs has been analyzed using the hybrid finite element method (FEM). Both the steady and transient state thermal operations are quantitatively studied with the effects of temperature-dependent thermal conductivities of GaN and the substrate materials properly treated. The temperature distribution and the maximum temperatures of the HFETs operated under excitations of continuous-waves (CW) and pulsed-waves (PW) including double exponential shape PW such as electromagnetic pulse (EMP) and ultra-wideband (UWB) signal are studied and compared.

  • Employing Optical SSB Modulation Technique in a Full-Duplex Radio-on-Fiber Transport System

    Hai-Han LU  Wen-Shing TSAI  Yu-Jie JI  Je-Wei LIAW  Yi-Shiuan LEE  Wan-Lin TSAI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    3150-3154

    A full-duplex radio-on-fiber (ROF) transport system based on optical single sideband (SSB) modulation, wavelength-division-multiplexing (WDM) and optical add-drop multiplexing techniques is proposed and demonstrated. A 1.5-dB RF power degradation due to the chromatic dispersion was achieved by employing optical SSB modulation scheme in the system, in which resulting in low bit error rate (BER) and third order intermodulation distortion to carrier ratio (IMD3/C) values. Such a proposed full-duplex ROF transport system is suitable for the long-haul microwave optical link.

  • Quinary Offset Carrier Modulations for Global Navigation Satellite System

    Wei LIU  Yuan HU  Tsung-Hsuan HSIEH  Jiansen ZHAO  Shengzheng WANG  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2020/11/20
      Vol:
    E104-B No:5
      Page(s):
    563-569

    In order to improve tracking, interference and multipath mitigation performance from that possible with existing signals, a new Global Navigation Satellite System (GNSS) signal is needed that can offer additional degrees of freedom for shaping its pulse waveform and spectrum. In this paper, a new modulation scheme called Quinary Offset Carrier modulation (QOC) is proposed as a new GNSS signal design. The pulse waveforms of QOC modulation are divided into two types: convex and concave waveforms. QOC modulations can be easily constructed by selecting different modulation parameters. The spectra and autocorrelation characteristics of QOC modulations are investigated and discussed. Simulations and analyses show that QOC modulation can achieve similar performance to traditional BOC modulation in terms of code tracking, anti-multipath, and compatibility. QOC modulation can provide a new option for satellite navigation signal design.

  • QoS Guaranteed Power and Sub-Carrier Allocation for Uplink OFDMA Networks

    Guowei LI  Qinghai YANG  Kyung Sup KWAK  

     
    PAPER-Network

      Pubricized:
    2017/10/16
      Vol:
    E101-B No:4
      Page(s):
    1021-1028

    The widespread application of mobile electronic devices has triggered a boom in energy consumption, especially in user equipment (UE). In this paper, we investigate the energy-efficiency (EE) of a UE experiencing the worst channel conditions, which is termed worst-EE. Due to the limited battery of the mobile equipment, worst-EE is a suitable metric for EE fairness optimization in the uplink transmissions of orthogonal frequency division multiple access (OFDMA) networks. More specifically, we determine the optimal power and sub-carrier allocation to maximize the worst-EE with respect to UEs' transmit power, sub-carriers and statistical quality-of-service (QoS). In order to maximize the worst-EE, we formulate a max-min power and sub-carrier allocation problem, which involves nonconvex fractional mixed integer nonlinear programming, i.e., NP-hard to solve. To solve the problem, we first relax the allocation of sub-carriers, formulate the upper bound problem on the original one and prove the quasi-concave property of objective function. With the aid of the Powell-Hestenes-Rockfellar (PHR) approach, we propose a fairness EE sub-carrier and power allocation algorithm. Finally, simulation results demonstrate the advantages of the proposed algorithm.

  • Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    Ching-Lin FAN  Yu-Sheng LIN  Yan-Wei LIU  

     
    LETTER-Electronic Displays

      Vol:
    E93-C No:5
      Page(s):
    712-714

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth = 0.33 V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO = +0.33 V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  • Distributed Power Optimization for Cooperative Localization: A Hierarchical Game Approach

    Lu LU  Mingxing KE  Shiwei TIAN  Xiang TIAN  Tianwei LIU  Lang RUAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2020/04/21
      Vol:
    E103-B No:10
      Page(s):
    1101-1106

    To tackle the distributed power optimization problems in wireless sensor networks localization systems, we model the problem as a hierarchical game, i.e. a multi-leader multi-follower Stackelberg game. Existing researches focus on the power allocation of anchor nodes for ranging signals or the power management of agent nodes for cooperative localization, individually. However, the power optimizations for different nodes are indiscerptible due to the common objective of localization accuracy. So it is a new challenging task when the power allocation strategies are considered for anchor and agent nodes simultaneously. To cope with this problem, a hierarchical game is proposed where anchor nodes are modeled as leaders and agent nodes are modeled as followers. Then, we prove that games of leaders and followers are both potential games, which guarantees the Nash equilibrium (NE) of each game. Moreover, the existence of Stackelberg equilibrium (SE) is proved and achieved by the best response dynamics. Simulation results demonstrate that the proposed algorithm can have better localization accuracy compared with the decomposed algorithm and uniform strategy.

  • A Fair Resource Sharing Mechanism between Mobile Virtual Network Operators

    Wei LIU  Rui HU  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2141-2150

    Mobile virtual network operators (MVNOs) are mobile operators without their own infrastructure or government issued spectrum licenses. They purchase spectrum resources from primary mobile network operators (MNOs) to provide communication services under their own brands. MVNOs are expected to play an important role in mobile network markets, as this will increase the competition in retail markets and help to meet the demand of niche markets. However, with the rapidly increasing demand of mobile data traffic, efficient utilization of the limited spectrum resources owned by MVNOs has become an important issue. We propose here a resource sharing mechanism between MVNOs against the background of network functions virtualization (NFV). The proposed mechanism enables MVNOs to improve their quality of service (QoS) by sharing spectrum resources with each other. A nash bargaining solution based decision strategy is also devised to ensure the fairness of resource sharing. Extensive numerical evaluation results validate the effectiveness of the proposed models and mechanisms.

  • A 65 nm 19.1-to-20.4 GHz Sigma-Delta Fractional-N Frequency Synthesizer with Two-Point Modulation for FMCW Radar Applications

    Yuanyuan XU  Wei LI  Wei WANG  Dan WU  Lai HE  Jintao HU  

     
    PAPER-Electronic Circuits

      Vol:
    E102-C No:1
      Page(s):
    64-76

    A 19.1-to-20.4 GHz sigma-delta fractional-N frequency synthesizer with two-point modulation (TPM) for frequency modulated continuous wave (FMCW) radar applications is presented. The FMCW synthesizer proposes a digital and voltage controlled oscillator (D/VCO) with large continuous frequency tuning range and small digital controlled oscillator (DCO) gain variation to support TPM. By using TPM technique, it avoids the correlation between loop bandwidth and chirp slope, which is beneficial to fast chirp, phase noise and linearity. The start frequency, bandwidth and slope of the FMCW signal are all reconfigurable independently. The FMCW synthesizer achieves a measured phase noise of -93.32 dBc/Hz at 1MHz offset from a 19.25 GHz carrier and less than 10 µs locking time. The root-mean-square (RMS) frequency error is only 112 kHz with 94 kHz/µs chirp slope, and 761 kHz with a fast slope of 9.725 MHz/µs respectively. Implemented in 65 nm CMOS process, the synthesizer consumes 74.3 mW with output buffer.

  • Optimal Pricing for Service Provision in Heterogeneous Cloud Market

    Xianwei LI  Bo GU  Cheng ZHANG  Zhi LIU  Kyoko YAMORI  Yoshiaki TANAKA  

     
    PAPER-Network

      Pubricized:
    2018/12/17
      Vol:
    E102-B No:6
      Page(s):
    1148-1159

    In recent years, the adoption of Software as a Service (SaaS) cloud services has surpassed that of Infrastructure as a Service (IaaS) cloud service and is now the focus of attention in cloud computing. The cloud market is becoming highly competitive owing to the increasing number of cloud service providers (CSPs), who are likely to exhibit different cloud capacities, i.e., the cloud market is heterogeneous. Moreover, as different users generally exhibit different Quality of Service (QoS) preferences, it is challenging to set prices for cloud services of good QoS. In this study, we investigate the price competition in the heterogeneous cloud market where two SaaS providers, denoted by CSP1 and CSP2, lease virtual machine (VM) instances from IaaS providers to offer cloud-based application services to users. We assume that CSP1 only has M/M/1 queue of VM instances owing to its limited cloud resources, whereas CSP2 has M/M/∞ queue of VM instances reflecting its adequate resources. We consider two price competition scenarios in which two CSPs engage in two games: one is a noncooperative strategic game (NSG) where the two CSPs set prices simultaneously and the other is a Stackelberg game (SG) where CSP2 sets the price first as the leader and is followed by CSP1, who sets the price in response to CSP2. Each user decides which cloud services to purchase (if purchases are to be made) based on the prices and QoS. The NSG scenario corresponds to the practical cloud market, where two CSPs with different cloud capacities begin to offer cloud services simultaneously; meanwhile, the SG scenario covers the instance where a more recent CSP plans to enter a cloud market whose incumbent CSP has larger cloud resources. Equilibrium is achieved in each of the scenarios. Numerical results are presented to verify our theoretical analysis.

  • Relationship of Channel and Surface Orientation to Mechanical and Electrical Stresses on N-Type FinFETs

    Wen-Teng CHANG  Shih-Wei LIN  Min-Cheng CHEN  Wen-Kuan YEH  

     
    PAPER

      Vol:
    E102-C No:6
      Page(s):
    429-434

    The electric properties of a field-effect transistor not only depend on gate surface sidewall but also on channel orientation when applying channel stain engineering. The change of the gate surface and channel orientation through the rotated FinFETs provides the capability to compare the orientation dependence of performance and reliability. This study characterized the <100> and <110> channels of FinFETs on the same wafer under tensile and compressive stresses by cutting the wafer into rectangular silicon pieces and evaluated their piezoresistance coefficients. The piezoresistance coefficients of the <100> and <110> silicon under tensile and compressive stresses were first evaluated based on the current setup. Tensile stresses enhance the mobilities of both <100> and <110> channels, whereas compressive stresses degrade them. Electrical characterization revealed that the threshold voltage variation and drive current degradation of the {100} surface were significantly higher than those of {110} for positive bias temperature instability and hot carrier injection with equal gate and drain voltage (VG=VD). By contrast, insignificant difference is noted for the subthreshold slope degradation. These findings imply that a higher ratio of bulk defect trapping is generated by gate voltage on the <100> surface than that on the <110> surface.

  • Dynamic Bubble-Check Algorithm for Check Node Processing in Q-Ary LDPC Decoders

    Wei LIN  Baoming BAI  Xiao MA  Rong SUN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:5
      Page(s):
    1815-1818

    A simplified algorithm for check node processing of extended min-sum (EMS) q-ary LDPC decoders is presented in this letter. Compared with the bubble check algorithm, the so-called dynamic bubble-check (DBC) algorithm aims to further reduce the computational complexity for the elementary check node (ECN) processing. By introducing two flag vectors in ECN processing, The DBC algorithm can use the minimum number of comparisons at each step. Simulation results show that, DBC algorithm uses significantly fewer comparison operations than the bubble check algorithm, and presents no performance loss compared with standard EMS algorithm on AWGN channels.

  • Design of Broadband Amplifier Embedded with Band-Pass Filter Using Discrete-Time Technique

    Chih-Hao LU  Ching-Wen HSUE  Bin-Chang CHIEU  Hsiu-Wei LIU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:5
      Page(s):
    882-889

    This paper presents an ultra-wideband amplifier embedded with band-pass filter design. The scattering parameters of a frequency-domain GaAs field effect transistor are converted into z-domain representations by employing the weighted linear least squares method. A least squares scheme is employed to obtain characteristic impedances of transmission line elements that form the amplifier having a flat gain in the passband and good fall-off selectivity in the stopband. Experimental results illustrate the validity of the proposed design method.

  • Exposure Fusion Using a Relative Generative Adversarial Network

    Jinhua WANG  Xuewei LI  Hongzhe LIU  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    1017-1027

    At present, the generative adversarial network (GAN) plays an important role in learning tasks. The basic idea of a GAN is to train the discriminator and generator simultaneously. A GAN-based inverse tone mapping method can generate high dynamic range (HDR) images corresponding to a scene according to multiple image sequences of a scene with different exposures. However, subsequent tone mapping algorithm processing is needed to display it on a general device. This paper proposes an end-to-end multi-exposure image fusion algorithm based on a relative GAN (called RaGAN-EF), which can fuse multiple image sequences with different exposures directly to generate a high-quality image that can be displayed on a general device without further processing. The RaGAN is used to design the loss function, which can retain more details in the source images. In addition, the number of input image sequences of multi-exposure image fusion algorithms is often uncertain, which limits the application of many existing GANs. This paper proposes a convolutional layer with weights shared between channels, which can solve the problem of variable input length. Experimental results demonstrate that the proposed method performs better in terms of both objective evaluation and visual quality.

  • Detecting Hardware Trojan through Time Domain Constrained Estimator Based Unified Subspace Technique

    Mingfu XUE  Wei LIU  Aiqun HU  Youdong WANG  

     
    LETTER-Dependable Computing

      Vol:
    E97-D No:3
      Page(s):
    606-609

    Hardware Trojan (HT) has emerged as an impending security threat to hardware systems. However, conventional functional tests fail to detect HT since Trojans are triggered by rare events. Most of the existing side-channel based HT detection techniques just simply compare and analyze circuit's parameters and offer no signal calibration or error correction properties, so they suffer from the challenge and interference of large process variations (PV) and noises in modern nanotechnology which can completely mask Trojan's contribution to the circuit. This paper presents a novel HT detection method based on subspace technique which can detect tiny HT characteristics under large PV and noises. First, we formulate the HT detection problem as a weak signal detection problem, and then we model it as a feature extraction model. After that, we propose a novel subspace HT detection technique based on time domain constrained estimator. It is proved that we can distinguish the weak HT from variations and noises through particular subspace projections and reconstructed clean signal analysis. The reconstructed clean signal of the proposed algorithm can also be used for accurate parameter estimation of circuits, e.g. power estimation. The proposed technique is a general method for related HT detection schemes to eliminate noises and PV. Both simulations on benchmarks and hardware implementation validations on FPGA boards show the effectiveness and high sensitivity of the new HT detection technique.

  • Hide Association Rules with Fewer Side Effects

    Peng CHENG  Ivan LEE  Jeng-Shyang PAN  Chun-Wei LIN  John F. RODDICK  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2015/07/14
      Vol:
    E98-D No:10
      Page(s):
    1788-1798

    Association rule mining is a powerful data mining tool, and it can be used to discover unknown patterns from large volumes of data. However, people often have to face the risk of disclosing sensitive information when data is shared with different organizations. The association rule mining techniques may be improperly used to find sensitive patterns which the owner is unwilling to disclose. One of the great challenges in association rule mining is how to protect the confidentiality of sensitive patterns when data is released. Association rule hiding refers to sanitize a database so that certain sensitive association rules cannot be mined out in the released database. In this study, we proposed a new method which hides sensitive rules by removing some items in a database to reduce the support or confidence levels of sensitive rules below specified thresholds. Based on the information of positive border rules and negative border rules contained in transactions, the proposed method chooses suitable candidates for modification aimed at reducing the side effects and the data distortion degree. Comparative experiments on real datasets and synthetic datasets demonstrate that the proposed method can hide sensitive rules with much fewer side effects and database modifications.

  • Study of the Multiplexing Schemes for COMPASS B1 Signals

    Wei LIU  Yuan HU  Xingqun ZHAN  

     
    LETTER-Navigation, Guidance and Control Systems

      Vol:
    E95-B No:3
      Page(s):
    1027-1030

    With the development of COMPASS system, finding suitable and efficient multiplexing solutions have become important for the system signal design. In this paper, based on the alternative BOC (AltBOC) modulation technique, the multiplexing scheme for COMPASS Phase II B1 signals is proposed. Then, to combine all COMPASS Phase III (CP III) B1 components into a composite signal with constant envelope, the generalized majority voting (GMV) technique is employed based on the characteristics of CP III B1 signals. The proposed multiplexing schemes also provide potential opportunities for GNSS modernization and construction, such as GPS, Galileo, etc.

  • A One-Round Certificateless Authenticated Group Key Agreement Protocol for Mobile Ad Hoc Networks

    Dongxu CHENG  Jianwei LIU  Zhenyu GUAN  Tao SHANG  

     
    PAPER-Information Network

      Pubricized:
    2016/07/21
      Vol:
    E99-D No:11
      Page(s):
    2716-2722

    Established in self-organized mode between mobile terminals (MT), mobile Ad Hoc networks are characterized by a fast change of network topology, limited power dissipation of network node, limited network bandwidth and poor security of the network. Therefore, this paper proposes an efficient one round certificateless authenticated group key agreement (OR-CLAGKA) protocol to satisfy the security demand of mobile Ad Hoc networks. Based on elliptic curve public key cryptography (ECC), OR-CLAGKA protocol utilizes the assumption of elliptic curve discrete logarithm problems (ECDLP) to guarantee its security. In contrast with those certificateless authenticated group key agreement (GKA) protocols, OR-CLAGKA protocol can reduce protocol data interaction between group users and it is based on efficient ECC public key infrastructure without calculating bilinear pairings, which involves negligible computational overhead. Thus, it is particularly suitable to deploy OR-CLAGKA protocol on MT devices because of its limited computation capacity and power consumption. Also, under the premise of keeping the forward and backward security, OR-CLAGKA protocol has achieved appropriate optimization to improve the performance of Ad Hoc networks in terms of frequent communication interrupt and reconnection. In addition, it has reduced executive overheads of key agreement protocol to make the protocol more suitable for mobile Ad Hoc network applications.

  • Investigation of Numerical Stability of 2D FE/FDTD Hybrid Algorithm for Different Hybridization Schemes

    Neelakantam VENKATARAYALU  Yeow-Beng GAN  Le-Wei LI  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2341-2345

    Numerical Stability of the Finite Element/Finite Difference Time Domain Hybrid algorithm is dependent on the hybridization mechanism adopted. A framework is developed to analyze the numerical stability of the hybrid time marching algorithm. First, the global iteration matrix representing the hybrid algorithm following different hybridization schemes is constructed. An analysis of the eigenvalues of this iteration matrix reveals the stability performance of the algorithm. Thus conclusions on the performance with respect to numerical stability of the different schemes can be arrived at. Further, numerical experiments are carried out to verify the conclusions based on the stability analysis.

21-40hit(85hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.