Keyword Search Result

[Keyword] WDM(230hit)

201-220hit(230hit)

  • Polarization Independent Semiconductor Arrayed Waveguide Gratings Using a Deep-Ridge Waveguide Structure

    Masaki KOHTOKU  Hiroaki SANJOH  Satoshi OKU  Yoshiaki KADOTA  Yuzo YOSHIKUNI  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1195-1204

    This paper describes the design of polarization insensitive InP-based arrayed waveguide gratings (AWGs), and the characteristics of fabricated devices. The use of a deep-ridge waveguide structure made the fabrication of compact polarization-insensitive AWGs possible. As a result, a low crosstalk (-30 dB) 8-channel AWG and a large-scale (64 channel) AWG with 50 GHz channel spacing could be fabricated. An integrated circuit containing an 8-channel AWG with photodetectors is also described.

  • Wide-Wavelength-Range Modulator-Integrated DFB Laser Diodes Fabricated on a Single Wafer

    Masayuki YAMAGUCHI  Koji KUDO  Hiroyuki YAMAZAKI  Masashige ISHIZAKA  Tatsuya SASAKI  

     
    INVITED PAPER-Active Devices for Photonic Networks

      Vol:
    E81-C No:8
      Page(s):
    1219-1224

    Different-wavelength distributed feedback laser diodes with integrated modulators (DFB/MODs) are fabricated on a single wafer operate at wavelengths from 1. 52 µm to 1. 59 µm, a range comparable to the expanded Er-doped fiber amplifier gain band. A newly developed field-size-variation electron-beam lithography enables grating pitch to be controlled to within 0. 0012 nm, and narrow-stripe selective metal-organic vapor-phase epitaxy is used to control the bandgap wavelength of laser active layers and modulator absorption layers for each channel. The channel spacing of fabricated 40-channel DFB/MODs is 214 GHz in average with a standard deviation of 0. 39 nm. Very uniform lasing and modulating performances are achieved, such as threshold currents about 10 mA and extinction ratios about 20 dB at -2 V in average. These devices have been used to demonstrate 2. 5-Gb/s transmission over 600 km of a normal fiber with a power penalty of less than 1 dB.

  • MQW Electroabsorption Optical Gates for WDM Switching Systems

    Mari KOIZUMI  Tatemi IDO  

     
    INVITED PAPER

      Vol:
    E81-C No:8
      Page(s):
    1232-1236

    We have developed a multiple quantum well (MQW) electroabsorption (EA) modulator for wavelength-division multiplexing (WDM) switching systems. The fabricated MQW EA gate has low polarization and wavelength-dependent loss and high extinction ratio within the wavelength range of 1545 to 1560 nm. And by using this gate ultra-high-speed switching is achieved for WDM signals. Moreover, we optimize the EA gate for the full gain-band of an erbium-doped fiber amplifier (EDFA)(1535 to 1560 nm). This EA gate provides low polarization-dependent loss, higher extinction ratio, and high saturation input power in the wider wavelength range. These MQW EA gates will play an important role in future WDM switching systems.

  • Wavelength Division Multiplexing Technology for Undersea System Applications

    Hidenori TAGA  Noboru EDAGAWA  Masatoshi SUZUKI  Shu YAMAMOTO  

     
    INVITED PAPER-WDM/TDM Transmission and Related Technologies

      Vol:
    E81-C No:8
      Page(s):
    1276-1284

    This paper describes the wavelength division multiplexing technology for the long-haul optical communication system, especially for the undersea cable system. At first, the present WDM technology for the undersea cable system is reviewed briefly. After that, some experiments using compensation of the dispersion slope of the transmission fiber are discussed as future technical options of undersea systems with over 100 Gbit/s capacity.

  • Optimization of Fiber Bragg Grating for Dense WDM Transmission System

    Akira INOUE  Toru IWASHIMA  Tadashi ENOMOTO  Shinji ISHIKAWA  Hiroo KANAMORI  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1209-1218

    A fiber Bragg grating, which has periodical perturbation of the refractive index in the fiber core, acts as a wavelength selective reflection filter and steep optical spectrum can be realized by forming more than ten thousand of gratings along the fiber core. Owing to capability of making steep optical spectrum, fiber Bragg gratings has been expected to be introduced practical use as multiplexing or demultiplexing filters in dense WDM transmission systems. On the other hand, radiation mode loss, reflection side mode and temperature dependence of Bragg wavelength, should be improved to put the fiber Bragg grating to practical use in dense WDM transmission systems. In this paper, an optimum design and performance of the fiber Bragg grating for dense WDM systems are described. The photosensitive cladding fiber realized less than 0. 2 dB insertion loss at transmitted signal channels and less than 0. 1 dB splicing loss with standard single-mode fibers. An adequate apodization technique in the refractive index distribution suppressed reflection side modes. A temperature compensating package, which gives longitudinal strain with negative temperature dependence to a fiber Bragg grating, minimized temperature dependence of Bragg wavelength less than 0. 001 nm/. Thermal decay of Bragg grating was also investigated and adequate annealing condition was estimated to obtain sufficient stability for practical use in dense WDM transmission.

  • Precisely Wavelength-Controlled Corrugation for DFB Laser Diodes Delineated by Weighted-Dose Electron-Beam Lithography

    Yoshiharu MUROYA  Kenji SATO  Tetsuro OKUDA  Takahiro NAKAMURA  Hirohito YAMADA  Toshitaka TORIKAI  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1225-1231

    Well-defined wavelength distributed feedback laser diodes (DFB-LDs) are required in WDM network systems. Since the EDFA gain bands have been expanded, even more wavelengths are needed for large-capacity dense-WDM transmission systems. A precisely pitch-controlled Bragg grating fabricated by electron beam (EB) lithography is very attractive for realizing these DFB-LDs. This paper describes this precise pitch- and phase-controlled grating delineated by a novel method called weighted-dose allocation variable-pitch EB-lithography (WAVE). In this method, an EB-dose profile for the grating is precisely controlled by a combination of the allocation and weighting of multiple exposures. This enables us to fabricate a precise fixed-pitch grating as well as a flexible grating with a continuously chirped structure. The stitching error at the exposure field boundary, the grating pitch, and the phase shift were evaluated by using a moire pattern generated by superimposing the microscope raster scan and the grating on a wafer. We also estimated amounts of the stitching errors from fabricated and calculated lasing characteristics, and clarified that the affect of the errors on the single-mode stability of LDs is negligible. Precise wavelength controlled λ/4 phase shifted DFB-LDs were successfully demonstrated as a result of both the WAVE method and the highly uniform MOVPE crystal growth.

  • Gain Equalizer in Long-Haul WDM Transmission System

    Takao NAITO  Naomasa SHIMOJOH  Takafumi TERAHARA  Terumi CHIKAMA  Masuo SUYAMA  

     
    PAPER

      Vol:
    E81-C No:8
      Page(s):
    1293-1300

    To expand signal wavelength bandwidth in long-haul, large-capacity WDM transmission systems, we investigated gain-equalizers (GEQs) for Erbium doped fiber amplifiers (EDFAs). We applied GEQs using Mach-Zehnder type filters with two different free-spectral-ranges (FSRs) to accurately compensate for the EDFAs gain-wavelength characteristics. The 1st GEQ with a longer FSR was the main GEQ to compensate for the overall gain-wavelength characteristics, and the 2nd GEQ with a shorter FSR was the secondary GEQ to compensate for the resultant gain undulation after the 1st GEQ. The 2nd GEQ had low maximum loss and long period of equalization-spacing compared to the 1st GEQ. We designed that the FSR for the 1st GEQ was twice the signal wavelength bandwidth, and the FSR for the 2nd GEQ was two thirds of the signal wavelength bandwidth. To compensate for the asymmetry in the EDFAs gain-wavelength characteristics, we designed that the 2nd GEQ minimum-loss wavelength was shorter than the 1st GEQ maximum-loss wavelength. Using a circulating loop with a 21-EDFA chain, we confirmed the signal wavelength bandwidth expanded by the above GEQs. We also investigated the trade-off relationship between the signal wavelength bandwidth and the optical signal-to-noise ratio, as the parameter of the number of the 1st GEQ inserted in the EDFAs chain. The achieved signal wavelength bandwidth after 10,000-km transmission was 12 nm. We successfully transmitted 170 Gbit/s (325. 332 Gbit/s) WDM signals over 9,879 km employing high alumina codoped EDFAs and Mach-Zehnder type filters with long FSRs.

  • Realizing the Vision of Multiwavelength Optical Networking

    Richard E. WAGNER  

     
    INVITED PAPER-Photonic Networking

      Vol:
    E81-C No:8
      Page(s):
    1159-1166

    The Multiwavelength Optical Networking (MONET) program consists of a consortium of industrial partners, working together with the intent to demonstrate the key capabilities needed for configurable WDM networks. This involves integrating WDM technologies with optical switching technologies to provide a managed, high capacity, national scale WDM server layer to transport optical signals transparently across multiple interworking subnetworks.

  • Optical Communications Technology Roadmap

    Keijiro HIRAHARA  Toshio FUJII  Koji ISHIDA  Satoshi ISHIHARA  

     
    SURVEY PAPER-Technology Roadmap

      Vol:
    E81-C No:8
      Page(s):
    1328-1341

    An optical communications technology roadmap leading up to the second decade of the 21st century has been investigated to provide a future vision of the optoelectronic technology in 15 to 20 years. The process whereby technology may progress toward the realization of the vision is indicated. A transmission rate of 100 Mbps for homes and a rate of 5 Tbps for the backbone network will be required in the first decade of the 21 century. Two technology roadmaps for public and business communications networks are discussed. It is concluded both WDM and TDM technology will be required to realize such an ultra-high capacity transmission. Technical tasks for various optical devices are investigated in detail.

  • Straight-Line Experiment and Numerical Simulation for RZ-Signal Long-Distance Transmission with Periodic Dispersion Compensation

    Akira NAKA  Toshiya MATSUDA  Shigeru SAITO  

     
    PAPER-Optical Communication

      Vol:
    E81-B No:4
      Page(s):
    722-728

    RZ signal transmission in an anomalous region with periodic dispersion compensation is examined by a straight-line experiment in terms of the compensation ratio, the signal power, and the pulse width. The optimum condition enables single-channel 20-Gbit/s RZ signal and two-WDM-channel 20-Gbit/s signals (40-Gbit/s in total) to be transmitted over 5,520 km and 2,160 km, respectively. Numerical simulations with the assistance of a basic theory enables analysis of the experimental results. It is shown that the balance between the waveform distortion and the remaining Gordon-Haus jitter determines the optimum conditions to achieve the longest transmission distance. Excess dispersion compensation results in waveform distortion, while insufficient compensation causes a greater amount of remaining jitter. Moreover, spectrum deformation during propagation is experimentally and numerically clarified to have a large effect on the transmission performance, especially for WDM transmission.

  • Wavelength Division Multiple Access Ring -- Virtual Topology on a Simple Ring Network --

    Xiaoshe DONG  Tomohiro KUDOH  Hideharu AMANO  

     
    PAPER-Computer Systems

      Vol:
    E81-D No:4
      Page(s):
    345-354

    In this paper, Wavelength Division Multiple access (WDM) ring is proposed for interconnection in workstation clusters or parallel machines. This network consists of ring connected routers each of which selectively passes signals addressed in some particular wavelengths. Other wavelengths are once converted to electric signals, and re-transmitted being addressed in different wavelengths. Wavelengths are assigned to divisors of the number of nodes in the system. Using the regular WDM ring with imaginary nodes, the diameter and average distance are reduced even if the number of nodes has few divisors. It provides better diameter and average distance than that of the uni-directional torus. Although the diameter and average distance is worse than that of ShuffleNet, the physical structure of the WDM ring is simple and the available number of nodes is flexible.

  • Theoretical and Experimental Study of Soliton Transmission in Dispersion Managed Links

    Thierry GEORGES  Francois FAVRE  Daniel Le GUEN  

     
    PAPER-Soliton Transmission

      Vol:
    E81-C No:2
      Page(s):
    226-231

    The propagation of solitons in a dispersion managed link can be mainly modeled with the evolution of two parameters γ and C, related to the spectral width and the chirp. Steady propagations are shown to be possible if the average dispersion lies in the anomalous domain. With the same conditions, periodical propagations are both theoretically and experimentally demonstrated. With the help of a perturbation theory, the jitter and the signal to noise ratio are theoretically evaluated. The latter is experimentally shown to be the low power limit of terrestrial systems based on non dispersion shifted fiber. Finally, wavelength and power margins of a single channel 20 Gbit/s soliton transmission over 11 amplifier spans of 102 km show that a 400 Gbit/s Wavelength Division Multiplexed transmission could be envisaged over the same distance.

  • Comparative Evaluation of Photonic ATM Switch Architectures

    Yoshihiro NAKAHIRA  Hideki SUNAHARA  Yuji OIE  

     
    PAPER-Advanced technologies for ATM system

      Vol:
    E81-B No:2
      Page(s):
    473-481

    In this paper, we discuss configurations of photonic ATM (Asynchronous Transfer Mode) switches and their advantages in terms of the number of optical switching devices to be implemented on the system, the number of wavelengths, throughput, broadcast function etc. In particular, we focus on photonic ATM switch architectures which can be built in the near future; that is, with presently available optical and electrical devices. For example, we assume the optical devices such as optical gate switches with 40 dB on/off ratio. In this context, we evaluate 17 types of photonic ATM switches; they are 6 types of input buffer type switches, 6 types of output buffer type switches, 4 types of shared buffer switches, and 1 proposed type. From our evaluation, for cell switching, wavelength division switching technologies are desirable compared with space division switching technologies in the sense that the former enables us to build a photonic ATM switch with the less number of optical gate switches. Furthermore, we propose a switch architecture equipped with optical delay line buffers on outputs and electric buffers on inputs. We show that our switch architecture is superior in the number of required optical gate switch elements under the given conditions.

  • Isolator-Free DFB-LD Module with TEC Control Using Silicon Waferboard

    Koji TERADA  Seimi SASAKI  Kazuhiro TANAKA  Tsuyoshi YAMAMOTO  Tadashi IKEUCHI  Kazunori MIURA  Mitsuhiro YANO  

     
    LETTER-Optoelectronic Packaging

      Vol:
    E80-C No:5
      Page(s):
    703-706

    This letter describes our DFB-LD module for use in WDM optical access networks. We realized an isolator-free DFB-LD module with a thermo-electric cooler in aim of stabilizing the emission wavelength for WDM systems. Silicon waferboard technology was employed to achieve simple assembly and small size of the module. This small size contributed to low TEC power. Our fabricated module demonstrated low-noise and stable emission wavelength characteristics under 156 Mbit/s pseudo random modulation.

  • Silica-Based Planar Lightwave Circuits for WDM Systems

    Yasuyuki INOUE  Kuniharu KATO  Katsunari OKAMOTO  Yasuji OHMORI  

     
    INVITED PAPER-Waveguide Circuit Design and Performance

      Vol:
    E80-C No:5
      Page(s):
    609-618

    Silica-based planar lightwave circuits (PLCs) are reviewed in terms of WDM applications. Four types of basic multiplexer are described and compared. Some topical applications of these multiplexers are introduced with their WDM systems. We conclude that because of these various applications, silica-based PLCs will play an important role in future WDM systems.

  • Performance Evaluation of Multipriority Reservation Protocols for Single-Hop WDM Networks

    Hyoung Soo KIM  Byung-Cheol SHIN  

     
    PAPER-Signaling System and Communication Protocol

      Vol:
    E80-B No:3
      Page(s):
    456-465

    We propose two multipriority reservation protocols for wavelength division multiplexing (WDM) networks. The network architecture is a single-hop with control channel-based passive star topology. Each station is equipped with two pairs of laser and filter. One pair of laser and filter is always tuned to wavelength λ0 for control and the other pair of laser and filter can be tuned to any of data wavelengths, λ1, λ2, ..., λN. According to the access methods of the control channel, one protocol is called slotted ALOHA-based protocol and the other protocol is called TDM-based protocol. The two protocols have the following properties. First, each of them has its own priority control scheme which easily accommodates multipriority traffics. Second, they can be employed in the network with limited channels, i.e. the number of stations in the system is not restricted by the number of data channels. Third, they are conflict-free protocols. By using a reservation scheme and a distributed arbitration algorithm, channel collision and destination conflict can be avoided. For the performance point of view, the TDM-based protocol gives an optimal solution for the priority control. However it is less scalable than the slotted ALOHA-based protocol. The slotted ALOHA-based protocol also performs good priority control even though it is not an optimal solution. We analyze their performances using a discrete time Markov model and verify the results by simulation.

  • Modification of the Shufflenet Connectivity Graph for Balancing the Load in the Case of Uniform Traffic

    Andrea BORELLA  Franco CHIARALUCE  

     
    LETTER-Graphs and Networks

      Vol:
    E80-A No:2
      Page(s):
    423-426

    We propose a modification of the perfect shuffle connectivity graph used in optical networks, which ensures the balance of the traffic load on the WDM channels. When applied to the simple but popular case of 8 nodes, connected through a shortest path routing algorithm, it allows to increase the aggregate capacity of more than 14%.

  • Integrated Tunable DBR Laser with EA-Modulator Grown by Selective Area MOVPE

    Yukio KATOH  Koji YAMADA  Tatsuo KUNII  Yoh OGAWA  

     
    PAPER

      Vol:
    E80-C No:1
      Page(s):
    69-73

    A wavelength tunable DBR laser monolithically integrated with an EA-modulator as a WDM system light source was fabricated by selective area MOVPE growth. The lasing wavelength and band-gap energy were simultaneously controlled on the same epitaxial wafer by using a modulated grown thickness of InGaAsP/InGaAsP MQW layers. A wavelength tuning range of 3.5 nm, an output power of 3 mW, and an extinction ratio of 14 dB for 3 V were achieved. The measured 3 dB frequency bandwidth was 2 GHz. No significant change in modulation characteristics were observed when wavelength tuning by injecting the current into the DBR.

  • Passive Aligned Hybrid Integrated WDM Transceiver Module Using Planar Lightwave Circuit Platform

    Hiroaki OKANO  Hideo OTSUKI  Hisato UETSUKA  Tatsuo TERAOKA  Tsuneo SHIOTA  Satoshi AOKI  Shinji TSUJI  

     
    PAPER

      Vol:
    E80-C No:1
      Page(s):
    112-116

    To realize a low-cost WDM transceiver module based on a PLC-platform, simple, assembly techniques have been successfully developed. The formation of index marks with an accuracy of below 0.1 µm has made it possible to mount Opto-electronic devices on the silicon terrace of the PLC-platform by a passive alignment. A newly developed trench formation technique for inserting a 1.3/1.5 µm WDM dielectric filter enabled us not only to ensure a stable WDM function but also to prevent excess loss associated with the dielectric filter scheme. It is found that these two technologies are practically useful to achieve high-performance WDM transceiver module.

  • Design of Two Multichannel DQDB Protocols for Singly-Hop WDM Networks

    Hyoung Soo KIM  Byung-Cheol SHIN  

     
    PAPER-Signaling System and Communication Protocol

      Vol:
    E79-B No:12
      Page(s):
    1865-1872

    Two simple and high performance multichannel distributed queue dual bus (MDQDB) protocols based on the wavelength division multiplexing (WDM) network technology are proposed, and the network architecture and operations are presented. To be suited for a high speed network, they inherit the advantages of the DQDB protocol such as node simplicity, network flexibility and distributed operations of individual nodes. The network capacity can also be greatly increased with marginal increase of node complexity. Simulation has been done to estimate the performances such as throughput and average access delays for individual nodes. The influence of the bandwidth balancing mechanism on the two protocols is considered at medium, high, and overload conditions. We also investigate the fairness characteristics in asymptotic conditions for various initial states.

201-220hit(230hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.