Keyword Search Result

[Keyword] switched-capacitor(43hit)

21-40hit(43hit)

  • A Versatile Step-Up/Step-Down Switched-Capacitor-Based DC-DC Converter

    Chia-Ling WEI  Lu-Yao WU  Hsiu-Hui YANG  Chien-Hung TSAI  Bin-Da LIU  Soon-Jyh CHANG  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:5
      Page(s):
    809-812

    For battery-powered electronic products, one way to extend battery life is to use a versatile step-up/step-down DC-DC converter. A new versatile step-up/step-down switched-capacitor-based converter structure is proposed, and its efficiency is analyzed. In the step-down case, the efficiency is the same as, or even better than the efficiency of linear regulators.

  • Novel Architecture of Feedforward Second-Order Multibit ΔΣAD Modulator

    Hao SAN  Hajime KONAGAYA  Feng XU  Atsushi MOTOZAWA  Haruo KOBAYASHI  Kazumasa ANDO  Hiroshi YOSHIDA  Chieto MURAYAMA  Kanichi MIYAZAWA  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    965-970

    This paper proposes novel feedforward architecture of the second-order multibit ΔΣAD modulator with single DAC-feedback topology. The ΔΣAD modulator realizes high resolution by oversampling and noise shaping techniques. However, its SNDR (Signal to Noise and Distortion Ratio) is limited by the dynamic range of the input signal and non-idealities of circuit building blocks, particularly by the harmonic distortion in amplifier circuits. A full feedforward ΔΣAD modulator structure has the signal transfer function of unity under ideal circumstances, which means that the signal swings through the loop filter become smaller compared with a feedbacked ΔΣAD modulator. Therefore, the harmonic distortion generated inside the loop filter can be significantly reduced in the feedforward structure because the effect of non-idealities in amplifiers can be suppressed when signal swing is small. Moreover, the reduction of the internal signal swings also relaxes output swing requirements for amplifiers with low supply voltage. However, in conventional feedforward ΔΣAD modulator, an analog adder is needed before quantizer, and especially in a multibit modulator, an additional amplifier is necessary to realize the summation of feedforward signals, which leads to extra chip area and power dissipation. In this paper, we propose a novel architecture of a feedforward ΔΣAD modulator which realizes the summation of feedforward signals without additional amplifier. The proposed architecture is functionally equivalent to the conventional one but with smaller chip area and lower power dissipation. We conducted MATLAB and SPICE simulations to validate the proposed architecture and modulator circuits.

  • Circuit Performance Degradation of Switched-Capacitor Circuit with Bootstrapped Technique due to Gate-Oxide Overstress in a 130-nm CMOS Process

    Jung-Sheng CHEN  Ming-Dou KER  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:3
      Page(s):
    378-384

    The MOS switch with bootstrapped technique is widely used in low-voltage switched-capacitor circuit. The switched-capacitor circuit with the bootstrapped technique could be a dangerous design approach in the nano-scale CMOS process due to the gate-oxide transient overstress. The impact of gate-oxide transient overstress on MOS switch in switched-capacitor circuit is investigated in this work with the sample-and-hold amplifier (SHA) in a 130-nm CMOS process. After overstress on the MOS switch of SHA with unity-gain buffer, the circuit performances in time domain and frequency domain are measured to verify the impact of gate-oxide reliability on circuit performances. The oxide breakdown on switch device degrades the circuit performance of bootstrapped switch technique.

  • Generalized Construction of ZCS Switched-Capacitor Bi-directional Converter

    Yuang-Shung LEE  Yin-Yuan CHIU  Ming-Wang CHENG  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E89-B No:10
      Page(s):
    2913-2921

    The proposed zero-current switching switched-capacitor (ZCS SC) DC-DC converter is an innovative bi-directional power flow control conversion scheme. A zero-current switching switched-capacitor step-up/step-down bi-directional converter is presented that can improve the current stress problem during bi-directional power flow control processing. It can provide a high voltage conversion ratio of n/ (n-mode/-mode) using four power MOSFET main switches, a set of switched-capacitors and a small resonant inductor. Simulation and experimental results are carried out to verify the concept and performance of the proposed quadruple-mode/quarter-mode bi-directional DC-DC converter.

  • A Reduced-Sample-Rate Sigma-Delta-Pipeline ADC Architecture for High-Speed High-Resolution Applications

    Vahid MAJIDZADEH  Omid SHOAEI  

     
    PAPER

      Vol:
    E89-C No:6
      Page(s):
    692-701

    A reduced-sample-rate (RSR) sigma-delta-pipeline (SDP) analog-to-digital converter architecture suitable for high-resolution and high-speed applications with low oversampling ratios (OSR) is presented. The proposed architecture employs a class of high-order noise transfer function (NTF) with a novel pole-zero locations. A design methodology is developed to reach the optimum NTF. The optimum NTF determines the location of the non-zero poles improving the stability of the loop and implementing the reduced-sample-rate structure, simultaneously. Unity gain signal transfer function to mitigate the analog circuit imperfections, simplified analog implementation with reduced number of operational transconductance amplifiers (OTAs), and novel, aggressive yet stable NTF with high out of band gain to achieve larger peak signal-to-noise ratio (SNR) are the main features of the proposed NTF and ADC architecture. To verify the usefulness of the proposed architecture, NTF, and design methodology, two different cases are investigated. Simulation results show that with a 4th-order modulator, designed making use of the proposed approach, the maximum SNDR of 115 dB and 124.1 dB can be achieved with only OSR of 8, and 16 respectively.

  • A Basic Study on a Very Low-Level DC Current Amplifier Using a Switched-Capacitor Circuit

    Hiroki HIGA  Naoki NAKAMURA  Ikuo NAKAMURA  

     
    PAPER

      Vol:
    E88-A No:6
      Page(s):
    1394-1400

    In order to miniaturize a very low-level dc current amplifier and to speed up its output response speed, we proposed to employ the switched-capacitor circuit (SCC) as its negative feedback circuit, instead of the conventionally used high-ohmage resistor. However, in the case of using SCC, the output waveform had unnecessary components. To decrease the effect of these components and to speed up the response speed, we used a switched-capacitor filter (SCF), an offset controller, and a positive feedback circuit. As a result, we demonstrated that it was useful to use the amplifier using the SCC.

  • Hybrid Cascode Compensation for Two-Stage CMOS Opamps

    Mohammad YAVARI  

     
    PAPER-Building Block

      Vol:
    E88-C No:6
      Page(s):
    1161-1165

    This paper presents the analysis of hybrid cascode compensation scheme, merged Ahuja and improved Ahuja style compensation methods, which is used in two-stage CMOS operational transconductance amplifiers (OTAs). The open loop signal transfer function is derived to allow the accurate estimation of the poles and zeros. This analytical approach shows that the non-dominant poles and zeros of the hybrid cascode compensation are about 40 percent greater than those of the conventional cascode compensation. Circuit level simulation results are provided to show the accuracy of the calculated expressions and also the usefulness of the proposed cascode compensation technique.

  • Sub-µW Switched-Capacitor Circuits Using a Class-C Inverter

    Minho KWON  Youngcheol CHAE  Gunhee HAN  

     
    PAPER-Analog Signal Processing

      Vol:
    E88-A No:5
      Page(s):
    1313-1319

    In a switched-capacitor (SC) circuit, the major block is an operational transconductance amplifier (OTA) designed in order to form a feedback loop. However, the OTA is the block that consumes most of the power in SC circuits. This paper proposes the use of a class-C inverter instead of the OTA in SC circuits and a corresponding switches configuration for extremely low power applications. A detailed analysis and design trade-offs are also provided. Simulation and experimental results show that sufficient performance can be obtained even though a class-C inverter is used. The second-order biquad filter and the second-order SC sigma-delta (ΣΔ) modulator based on a class-C inverter are designed. These circuits have been fabricated with a 0.35-µm CMOS process. The measurement results of the fabricated SC biquad filter show a 59-dB signal-to-noise-plus-distortion ratio (SNDR) for a 0.2-Vp-p input signal and 0.9-V dynamic ranges. The power consumption of the biquad filter is only 0.4 µW with a 1-V power supply. The measurement results of the fabricated ΣΔ modulator show a 61-dB peak SNR for a 1.6-kHz bandwidth with a sample rate of 200 kHz. The modulator consumes 0.8 µW with a 1-V power supply.

  • Low-Voltage Sigma-Delta Modulator Topologies for Broadband Communications Applications

    Mohammad YAVARI  Omid SHOAEI  Francesco SVELTO  

     
    PAPER

      Vol:
    E87-C No:6
      Page(s):
    964-975

    This paper presents a novel class of sigma-delta modulator topologies for low-voltage, high-speed, and high-resolution applications with low oversampling ratios (OSRs). The main specifications of these architectures are the reduced analog circuit requirements, large out-of-band gain in the noise transfer function (NTF) without any stability concerns to achieve high signal to noise ratio (SNR) with a low OSR, and unity-gain signal transfer function (STF) to reduce the harmonic distortions resulted from the analog circuit imperfections. To demonstrate the efficiency of the proposed modulator architectures a prototype with HSPICE is implemented. A low-power two-stage class A/AB OTA with modified common mode feedback (CMFB) circuit in the first stage is used to implement the fourth order modulator. Simulation results with OSR of 16 give signal to noise plus distortion ratio (SNDR) and dynamic range (DR) of 90-dB and 92.5-dB including the circuit noise in the 1.25-MHz signal bandwidth, respectively. The circuit is implemented in a 0.13-µm standard CMOS technology. It dissipates about 40-mW from a single 1.2-V power supply voltage.

  • A Time-Interleaved Switched-Capacitor Band-Pass Delta-Sigma Modulator with Recursive Loop

    Minho KWON  Jungyoon LEE  Gunhee HAN  

     
    PAPER-Electronic Circuits

      Vol:
    E87-C No:5
      Page(s):
    785-790

    A band-pass delta-sigma modulator (BPDSM) is a key building block to implement a digital intermediate frequency (IF) receiver in a wireless communication system. This paper proposes a time-interleaved (TI) switched-capacitor (SC) BPDSM architecture that consists of 5-stage TI blocks with recursive loop. The proposed TI BPDSM provides reduction in the clock frequency requirement by a factor of 5 and relaxes the settling time requirement to one-fourth of conventional approach. The test chip was designed and fabricated for a 30-MHz IF system with a 0.35-µm CMOS process. The measured peak SNR for a 200-kHz bandwidth is 63 dB while dissipating 75 mW from a 3.3-V supply and occupying 1.3 mm2.

  • 3.3 V 35 mW Second-Order Three-Bit Quadrature Band-Pass ΔΣ Modulator for Digital Radio

    Hack-Soo OH  Chang-Gene WOO  Pyung CHOI  Geunbae LIM  Jang-Kyoo SHIN  Jong-Hyun LEE  

     
    PAPER-Analog Signal Processing

      Vol:
    E86-A No:12
      Page(s):
    3230-3239

    Delta-sigma modulators (DSMs) are commonly use in high-resolution analog-to-digital converters, and band-pass delta-sigma modulators have recently been used to convert IF signals into digital signals. In particular, a quadrature band-pass delta-sigma modulator can achieve a lower total order, higher signal-to-noise ratio (SNR), and higher bandwidth when compared with conventional band-pass modulators. The current paper proposes a second-order three-bit quadrature band-pass delta-sigma modulator that can achieve a lower power consumption and better performance with a similar die size to a conventional fourth-order quadrature band-pass delta-sigma modulator (QBPDSM). The proposed system is integrated using CMOS 0.35 µm, double-poly, four-metal technology. The system operates at 13 MHz and can digitize a 200 kHz bandwidth signal centered at 4.875 MHz with an SNR of 85 dB. The power consumption is 35 mW at 3.3 V and 38 mW at 5 V, and the die size is 21.9 mm2.

  • A CMOS 33-mW 100-MHz 80-dB SFDR Sample-and-Hold Amplifier

    Cheng-Chung HSU  Jieh-Tsorng WU  

     
    PAPER-Electronic Circuits

      Vol:
    E86-C No:10
      Page(s):
    2122-2128

    A high-speed high-resolution sample-and-hold amplifier (SHA) is designed for time-interleaved analog-to-digital converter applications. Using the techniques of precharging and output capacitor coupling can mitigate the stringent performance requirements for the opamp, resulting in low power dissipation. Implemented in a standard 0.25 µm CMOS technology, the SHA achieves 80 dB spurious-free dynamic range (SFDR) for a 1.8 Vpp output at 100 MHz Nyquist sampling rate. The SHA occupies a die area of 0.35 mm2 and dissipates 33 mW from a single 2.5 V supply.

  • A New Analog Correlator Circuit for DS-CDMA Wireless Applications

    Mostafa A. R. ELTOKHY  Boon-Keat TAN  Toshimasa MATSUOKA  Kenji TANIGUCHI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:5
      Page(s):
    1294-1301

    A new analog correlator circuit is proposed for direct sequence code division multiple access (DS-CDMA) demodulator. The circuit consists of only 16 switches, 4 capacitors and 2 level shifters. Control sequence requires only three clock phases. Simulation with code length of 127 reveals that the proposed circuit has a good ability to cancel off the charge error and dissipates 3.4mW at 128MHz. The circuit had been designed using a 0.6µm CMOS process. The area of 256µm 245µm is estimated to be 9 times smaller compared to other reported equivalent analog correlators.

  • Design and Implementation of a Fourth-Order Quadrature Band-Pass Delta-Sigma Modulator for Low-IF Receivers

    Sung-Wook JUNG  Chang-Gene WOO  Sang-Won OH  Hae-Moon SEO  Pyung CHOI  

     
    PAPER-Analog Signal Processing

      Vol:
    E83-A No:12
      Page(s):
    2649-2656

    The delta-sigma modulator (DSM) is an excellent choice for high-resolution analog-to-digital converters. Recently, a band-pass DSM has been a desirable choice for direct conversion of an IF signal into a digital bit stream. This paper proposes a quadrature band-pass DSM for digitizing a narrow-band IF signal. This modulator can achieve a lower total order, higher signal-to-noise ratio (SNR), and higher bandwidth when compared with conventional band-pass modulators. An experimental prototype employing the quadrature topology has been integrated in 0.6 µm, double-poly, double-metal CMOS technology with capacitors synthesized from a stacked poly structure. This system clocked at 13 MHz and digitized a 200 kHz bandwidth signal centered at 4.875 MHz with 100 dB of dynamic range. Power consumption is 190 mW at 5 V.

  • An Accurate Offset- and Gain-Compensated Sample/Hold Circuit

    Xiaojing SHI  Hiroki MATSUMOTO  Kenji MURAO  

     
    LETTER-Circuit Theory

      Vol:
    E83-A No:12
      Page(s):
    2756-2757

    A novel SC (Switched-Capacitor) offset- and gain-compensated sample/hold circuit is presented. It is implemented by a new topology which reduces the effects due to the imperfections of op-amp. Simulation results indicate that the circuit achieves high accuracy without requiring high-quality components.

  • Semi-Parallel Cyclic Type Switched-Capacitor Filter Using Unity Gain Buffer

    Toshihiro MORI  Nobuaki TAKAHASHI  Tsuyoshi TAKEBE  

     
    PAPER-Analog Signal Processing

      Vol:
    E83-A No:7
      Page(s):
    1370-1380

    Recently, we developed a low power consumption and small total capacitance switched-capacitor filter using a single operational amplifier. It is called a semi-parallel cyclic type (SPCT) filter, in which each capacitance is in proportion to the square root of a transfer function coefficient value. In this paper, we propose the SPCT filter using a single unity gain buffer (UGB). It will be referred to a UGB-SPCT filter. It is possible to use the UGB-SPCT filter over a wider frequency range than the SPCT filter since a UGB has nearly unity gain over a wide frequency range.

  • A Single-Chip Stereo Audio Delta-Sigma A/D Converter with 117 dB Dynamic Range

    Ichiro FUJIMORI  

     
    PAPER

      Vol:
    E83-A No:2
      Page(s):
    243-251

    A 24-bit, 96 kHz stereo A/D converter (ADC) for DVD-audio has been developed. The single-chip integrates stereo delta-sigma modulators (Δ ΣM's), a voltage reference, and a decimation filter. A fourth-order cascaded Δ ΣM using a local feedback technique was employed to avoid overload without sacrificing noise performance. Low power switched-capacitor techniques were used for implementation. A two-stage decimation filter architecture that reduces digital switching noise was also developed. A merged multi-stage comb filter was used for the first stage, and a bit-serial finite-impulse-response (FIR) filter was used for the second stage. The 18.0 mm2 chip was fabricated in 0.6-µm CMOS with low threshold devices. Measured results show 117 dB A-weighted dynamic range in the 20 kHz passband, with 470 mW power dissipation at 5 V operation.

  • An IIR SC Filter Utilizing Square Roots of Transfer Function Coefficient Values

    Toshihiro MORI  Nobuaki TAKAHASHI  Tsuyoshi TAKEBE  

     
    PAPER

      Vol:
    E82-A No:3
      Page(s):
    442-449

    Recently, we proposed a low power consumption FIR switched-capacitor filter constructed with capacitors having capacitances in proportion to square roots of transfer function coefficient values. It is referred to as an FIR semi-parallel cyclic type (SPCT) filter. In this paper, we present IIR SPCT filter. It needs only a single operational amplifier, hence being low power consumption. The IIR SPCT filter has smaller total capacitance than one of the IIR parallel cyclic type (PCT) filter and better high frequency response than one of the IIR transfer function coefficient ratio (TCR) filter. As a whole, the IIR SPCT filter has middle performance of the IIR PCT and TCR filters for the total capacitance, the number of types of clock pulses, and high frequency response.

  • Experimental Observations of 2- and 3-Neuron Chaotic Neural Networks Using Switched-Capacitor Chaotic Neuron IC Chip

    Yoshihiko HORIO  Ken SUYAMA  

     
    PAPER-Neural Networks

      Vol:
    E78-A No:4
      Page(s):
    529-535

    Switched-capacitor chaotic neurons fabricated in a full-custom integrated circuit are used to investigate the behavior of 2- and 3-neuron chaotic neural networks. Various sets of parameters are used to visualize the dynamical responses of the networks. Hysteresis of the network is also demonstrated. Lyapunov exponents are approximated from the measured data to characterize the state of each neuron. The effect of the finite length of data and the rounding effect of data acquisition system to the computation of Lyapunov exponents are briefly discussed.

  • A Capacitor-Error-Free SC Voltage Inverter with Zero Sensitivity to Element-Value Variations

    Sin Eam TAN  Takahiro INOUE  Fumio UENO  

     
    LETTER-Switched Capacitor Circuits

      Vol:
    E77-A No:8
      Page(s):
    1407-1408

    A capacitor-error-free SC voltage inverter with zero sensitivity to element-value variations is proposed. By virtue of the capacitor-error-free property, this SC voltage inverter is free from the capacitor mismatch. The performance of this SC voltage inverter has been confirmed from both the simulation and experiment.

21-40hit(43hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.