Rui WU Wei DENG Shinji SATO Takuichi HIRANO Ning LI Takeshi INOUE Hitoshi SAKANE Kenichi OKADA Akira MATSUZAWA
A 60-GHz CMOS transmitter with on-chip antenna for high-speed short-range wireless interconnections is presented. The radiation gain of the on-chip antenna is doubled using helium-3 ion irradiation technique. The transmitter core is composed of a resistive-feedback RF amplifier, a double-balanced passive mixer, and an injection-locked oscillator. The wideband and power-saving design of the transmitter core guarantees the low-power and high-data-rate characteristic. The transmitter fabricated in a 65-nm CMOS process achieves 5-Gb/s data rate with an EVM performance of $-$12 dB for BPSK modulation at a distance of 1,mm. The whole transmitter consumes 17,mW from a 1.2-V supply and occupies a core area of 0.64,mm$^{2}$ including the on-chip antenna. The gain-enhanced antenna together with the wideband and power-saving design of the transmitter provides a low-power low-cost full on-chip solution for the short-range high-data-rate wireless communication.
Jian PANG Ryo KUBOZOE Zheng LI Masaru KAWABUCHI Atsushi SHIRANE Kenichi OKADA
Regarding the enlarged array size for the 5G new radio (NR) millimeter-wave phased-array transceivers, an improved phase tuning resolution will be required to support the accurate beam control. This paper introduces a CMOS implementation of an active vector-summing phase shifter. The proposed phase shifter realizes a 6-bit phase shifting with an active area of 0.32mm2. To minimize the gain variation during the phase tuning, a gain error compensation technique is proposed. After the compensation, the measured gain variation within the 5G NR band n257 is less than 0.9dB. The corresponding RMS gain error is less than 0.2dB. The measured RMS phase error from 26.5GHz to 29.5GHz is less than 1.2°. Gain-invariant, high-resolution phase tuning is realized by this work. Considering the error vector magnitude (EVM) performance, the proposed phase shifter supports a maximum data rate of 11.2Gb/s in 256QAM with a power consumption of 25.2mW.
Bangan LIU Yun WANG Jian PANG Haosheng ZHANG Dongsheng YANG Aravind Tharayil NARAYANAN Dae Young LEE Sung Tae CHOI Rui WU Kenichi OKADA Akira MATSUZAWA
An energy efficient modulator for an ultra-low-power (ULP) 60-GHz IEEE transmitter is presented in this paper. The modulator consists of a differential duobinary coder and a semi-digital finite-impulse-response (FIR) pulse-shaping filter. By virtue of differential duobinary coding and pulse shaping, the transceiver successfully solves the adjacent-channel-power-ratio (ACPR) issue of conventional on-off-keying (OOK) transceivers. The proposed differential duobinary code adopts an over-sampling precoder, which relaxes timing requirement and reduces power consumption. The semi-digital FIR eliminates the power hungry digital multipliers and accumulators, and improves the power efficiency through optimization of filter parameters. Fabricated in a 65nm CMOS process, this modulator occupies a core area of 0.12mm2. With a throughput of 1.7Gbps/2.6Gbps, power consumption of modulator is 24.3mW/42.8mW respectively, while satisfying the IEEE 802.11ad spectrum mask.
Qinghong BU Ning LI Kenichi OKADA Akira MATSUZAWA
This paper presents the evaluation of the L-2L de-embedding method with misalignment of the contact position. The issues of misalignment of the contact position are investigated. The analysis of misalignment in the L-2L de-embedding procedure is performed. Two comparisons are carried out to verify the error of the L-2L de-embedding method. The calculation percent error in quality factor of the transmission line becomes up to 9.0%, while the transistor S-parameter error percentage becomes up to 21% at 60 GHz in the experimental results. The results show that the measurement errors, caused by the misalignment of the contact position, should be considered carefully.
Yoshiaki YOSHIHARA Hirotaka SUGAWARA Hiroyuki ITO Kenichi OKADA Kazuya MASU
This paper presents a novel wide tuning range CMOS Voltage Controlled Oscillator (VCO). VCO uses an on-chip variable inductor as an additional variable element to extend the tuning range of VCO. The fabricated variable inductor achieves the variable range of 35%. The VCO was fabricated using 0.35 µm standard CMOS process, and can be tuned continuously from 2.13 GHz to 3.28 GHz (tuning range of 38%) without degradation of phase noise. Wide tunable LC-VCO using a variable inductor is one of the key circuits for reconfigurable RF circuit.
Hirotaka SUGAWARA Kenichi OKADA Kazuya MASU
This paper proposes a novel wide-tunable CMOS low-noise amplifier (LNA) using a variable inductor. The variable inductance can be tuned by shielding the magnetic flux, which uses a metal plate above the inductor. The metal plate can be moved using a MEMS actuator. At the present time, the MEMS actuator has not been implemented yet. In this paper, we present a feasibility study on the proposed LNA using the variable inductor. The proposed LNA uses two variable inductors for input and output impedance matching-tuning. The LNA achieves a power gain (PG) of over 10 dB at a tuning range of 1.6-3.2 GHz.
Masashi HIRAIWA Hiromitsu ASAKURA Tateki NARITA Tomoyuki YASHIRO Hiroshi SHIGENO Kenichi OKADA
The roadside network system for ITS services uses microcells in its access infrastructure. For the roadside network that provides the uninterrupted communication using microcells such as DSRC, an effective communication control scheme must be established so as to manage the communication passes to vehicles in the network. One of the fundamental requirements for the communication control scheme for the roadside network is to assure fault-tolerance, which means in this system that the communication control mechanism needs to be managed even in part of the base stations in the network might be in fault. On the other hand, for the communication control in the roadside network using microcells, issues to be solved are the handover mechanism for taking over connection information to provide uninterrupted communication environment, which causes the degradation of the end-to-end throughput. In order to solve those problems, the authors developed a communication control scheme. We implemented the scheme as the specific 'ADS algorism' to control the communication zone dynamically, which works effectively on the Autonomous Decentralized System (ADS) communication platform. Furthermore, we also developed the specific ADS algorism to assure fault-tolerance for the communication zone control, which can reconfigure the communication zone in case the BSs in the roadside network are in fault and can keep the operations by the reconfigured communication zone. We evaluated the ADS algorism for the communication zone control by computer simulation. The results show the effectiveness of the ADS algorism for the dynamic communication zone control mechanism and for the fault-tolerant mechanism for communication zone reconfiguration on fault.
Korkut Kaan TOKGOZ Kimsrun LIM Seitarou KAWAI Nurul FAJRI Kenichi OKADA Akira MATSUZAWA
A multi-port device is characterized using measurement results of a two-port Vector Network Analyzer (VNA) with four different structures. The loads used as terminations are open-, or short-circuited transmission lines (TLs), which are characterized along with Ground-Signal-Ground pads based on L-2L de-embedding method. A new characterization method for a four-port device is introduced along with its theory. The method is validated using simulation and measurement results. The characterized four-port device is a Crossing Transmission Line (CTL), mainly used for over-pass or under-pass of RF signals. Four measurement results are used to characterize the CTL. The S-parameter response of the CTL is found. To compare the results, reconstructed responses compared with the measurements. Results show good agreement between the measured and modeled results from 1 GHz to 110 GHz.
Cognitive radio and/or SDR (Software Defined Radio) inherently requires multi-band and multi standard wireless circuit. The circuit is implemented based on Si CMOS technology. In this article, the recent progress of Si RF CMOS is described and the reconfigurable RF CMOS circuit which was proposed by the authors is introduced. At the present and in the future, several kind of Si CMOS technology can be used for RF CMOS circuit implementation. The realistic RF CMOS circuit implementation toward cognitive and/or SDR is discussed.
Zule XU Anugerah FIRDAUZI Masaya MIYAHARA Kenichi OKADA Akira MATSUZAWA
This paper presents a type-I digital ring-based PLL with wide loop bandwidth to lower the ring oscillator's noise contribution. The loop delay due to the D flip-flops at filter's output is compensated in order to lower the noise peak and stably achieve wide loop bandwidth. The input-referred jitter is lowered by using a successive-approximated-register analog-to-digital converter (SAR-ADC)-based sampling phase detector (SPD). A stacked reference buffer is introduced to reduce the transient short-circuit current for low power and low reference spur. The locking issue due to the steady-state phase error in a type-I PLL and the limited range of the phase detector is addressed using a TDC-assisted loop. The loop stability and phase noise are analyzed, suggesting a trade-off for the minimum jitter. The solutions in detail are described. The prototype PLL fabricated in 65 nm CMOS demonstrates 2.0 ps RMS jitter, 3.1 mW power consumption, and 0.067 mm2 area, with 50 MHz reference frequency and 2.0 GHz output frequency.
Kentaro FUKUI Kensaku HONDA Kenichi OKADA
Currently, multi-party video conference does not provide equivalent quality in comparison to face-to-face conference. One assumed reason is that participants cannot be aware of "who is focusing on whom". We introduce virtual space to a multi-party conference system, allocating avatars in a space. We also introduce intuitive input interface using motion processor in order to construct a multi-party conference system, which the user can use without being aware of it. A new displaying method is essential for this system, and we introduce a way by which a user can obtain the feedback of which user he/she is focusing on. We introduce e-MulCS as the system that fulfils these proposals. By comparing this system with the video conference system, the results show that our system supports the intuitive multi-party communication better.
Ning LI Keigo BUNSEN Naoki TAKAYAMA Qinghong BU Toshihide SUZUKI Masaru SATO Yoichi KAWANO Tatsuya HIROSE Kenichi OKADA Akira MATSUZAWA
At mm-wave frequency, the layout of CMOS transistors has a larger effect on the device performance than ever before in low frequency. In this work, the distance between the gate and drain contact (Dgd) has been enlarged to obtain a better maximum available gain (MAG). By using the asymmetric-layout transistor, a 0.6 dB MAG improvement is realized when Dgd changes from 60 nm to 200 nm. A four-stage common-source low noise amplifier is implemented in a 65 nm CMOS process. A measured peak power gain of 24 dB is achieved with a power dissipation of 30 mW from a 1.2-V power supply. An 18 dB variable gain is also realized by adjusting the bias voltage. The measured 3-dB bandwidth is about 17 GHz from 51 GHz to 68 GHz, and noise figure (NF) is from 4.0 dB to 7.6 dB.
Ryo MINAMI JeeYoung HONG Kenichi OKADA Akira MATSUZAWA
This paper presents measurement of on-chip coupling between PA and LNA integrated on Si CMOS substrate, which is caused by substrate coupling, magnetic coupling, power-line coupling, etc. These components are decomposed by measurements using diced chips. The result reveals that the substrate coupling is the most dominant in CMOS chips and the total isolation becomes less than -50 dB with more than 0.4 mm PA-to-LNA distance.
Aravind Tharayil NARAYANAN Kenichi OKADA
This paper proposes a pulse-tail-feedback VCO, in which the tail transistor is driven using pulse-shaped voltage signals with rail-to-rail swing. The proposed pulse-tail-feedback (PTFB) VCO relies on reducing the current conduction period of the tail transistor and operating the tail transistors in triode region for reducing the flicker and thermal noise from the active elements. Mathematical analysis and circuit level simulations of the phase noise mechanism in the proposed PTFB-VCO is also presented in this paper for validating the effectiveness of the proposed technique. A prototype LC-VCO with the proposed PTFB technique is fabricated in a standard 180nm CMOS. Laboratory measurement shows a power consumption of 1.35mW from a 1.2V supply at 4.6GHz. The proposed PTFB-VCO achieves a flicker corner of 700Hz, which enables the VCO to maintain a fairly constant figure-of-merit (FoM) of -195dB within a wide offset frequency range of 1kHz-10MHz.
Ning LI Qinghong BU Kota MATSUSHITA Naoki TAKAYAMA Shogo ITO Kenichi OKADA Akira MATSUZAWA
The noise performance of common source and cascode topology 60 GHz LNAs is analyzed and verified. The analysis result shows that the noise performance of the cascode topology is degraded at high frequency due to the inter-stage node capacitance. The analysis result is verified by experimental results. A three-stage LNA employing two noise-matched CS stages and a cascode stage is proposed. For comparison a conventional two-stage cascode LNA is also been studied with the measurement-based model. The measured results of the proposed LNA show that an input and output matching of less than -10 dB, a maximum gain of 9.7 dB and a noise figure (NF) of 3.2 dB are obtained with a power consumption of 30 mW from a 1.2-V supply voltage. Compared to the conventional cascode LNA, an improvement of 2.3-dB for NF and 1.9-dB for power gain are realized. Both the proposed and conventional LNAs are implemented in 65 nm CMOS process.
Rui MURAKAMI Shoichi HARA Kenichi OKADA Akira MATSUZAWA
In this paper we present a study on the design optimization of voltage-controlled oscillators. The phase noise of LC-type oscillators is basically limited by the quality factor of inductors. It has been experimentally shown that higher-Q inductors can be achieved at higher frequencies while the oscillation frequency is limited by parasitic capacitances. In this paper, the minimum transistor size and the degradation of the quality factor caused by a switched-capacitor array are analytically estimated, and the maximum oscillation frequency of VCOs is also derived from an equivalent circuit by considering parasitic capacitances. According to the analytical evaluation, the phase noise of a VCO using a 65 nm CMOS is 2 dB better than that of a 180 nm CMOS.
Kenichi OKADA Hiroaki HOSHINO Hidetoshi ONODERA
This paper presents a methodology for optimizing the layout of on-chip spiral inductors using structural parameters and design frequency in a response surface method. The proposed method uses scattering parameters (S-parameter) to express inductor characteristics, and hence is independent of spiral geometries and equivalent circuit models. The procedure of inductor optimization is described, and a design example is presented.
Takuichi HIRANO Ning LI Kenichi OKADA
The equivalent anisotropic material parameters of metal dummy fills in a CMOS chip were extracted through an eigenmode analysis of a unit-cell of a space filled with metal dummies. The validity of the parameters was confirmed by comparing the S-parameters of a parallel-plate waveguide with the metal dummy fills and their effective material properties. The validity of the effective material properties was also confirmed by using them in a simulation of an on-chip dipole antenna.
Wei DENG Kenichi OKADA Akira MATSUZAWA
This paper investigates a clock frequency generator for ultra-low-voltage sub-picosecond-jitter clock generation in future 0.5-V LSI and power aware LSI. To address the potential possible solution for ultra-low-voltage applications, a 0.5 V clock frequency generator is proposed and implemented. Significant performances, in terms of sub 1-ps jitter, 50 MHz-to-6.4 GHz frequency tuning range with 2 bands and sub 1-mW PDC, demonstrated the viable replacement of ring oscillators in low-voltage and low-jitter clock generator.
Shoichi HARA Rui MURAKAMI Kenichi OKADA Akira MATSUZAWA
The multiple-divide technique, using the multi-ratio frequency divider, has a possibility to improve FoM of VCO. This paper proposes a design optimization of LC-VCO using the multiple-divide technique. In the simulated results using 90-nm CMOS model parameters, the optimum frequency range, achieving better than -187.0 dBc/Hz of FoM, can be extended from 6.5-12.5 GHz to 1.5-12.5 GHz. The proposed multiple-divide technique can provide a lower phase-noise, lower power consumption, smaller layout area of LC-VCO.