Masanori FURUTA Ippei AKITA Junya MATSUNO Tetsuro ITAKURA
This paper presents a 7-bit 1.5-GS/s time-interleaved (TI) SAR ADC. The scheme achieves better isolation between sub-ADCs thanks to embedding a track-and-hold (T/H) amplifier and reference voltage buffer in each sub-ADC. The proposed dynamic T/H circuit enables high-speed, low-power operation. The prototype is fabricated in a 65-nm CMOS technology. The total active area is 0.14,mm2 and the ADC consumes 36 mW from a 1.2-V supply. The measured results show the peak spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) are 52.4 dB and 39.6 dB, respectively, and an figure of Merit (FoM) of 300 fJ/conv. is achieved.
Ryuichi FUJIMOTO Chihiro YOSHINO Tetsuro ITAKURA
A simple modeling technique for symmetric inductors is proposed. Using the proposed technique, all model parameters for an equivalent circuit of symmetric inductors are easily calculated from geometric, process and substrate resistance parameters without using electromagnetic (EM) simulators. Comparison of simulated results with measured results verifies the effectiveness of the proposed modeling technique up to 5 GHz with center-tapped or non-center-tapped configurations.
Rui ITO Tetsuro ITAKURA Tadashi ARAI
In a direct conversion receiver for mobile communication, it is important to reduce power dissipation. Because a low pass filter in a direct conversion receiver must suppress adjacent channel signals, a high order and high power dissipation is often required in the low pass filter. We propose a new phase compensation technique suitable for a low power transconductor used in a GmC filter as a low pass filter. The new phase compensation technique reduces 10% of power dissipation.
Tetsuro ITAKURA Hironori MINAMIZAKI
This paper examines the design considerations for an opamp to be used in a low-power consumption LCD driver IC: (1) slew rate enhancement suitable for a rail-to-rail input stage; (2) improved phase compensation with reduced compensation capacitance; and (3) limitation of instantaneous current consumption. The experimental results support our opamp design approach and indicate the feasibility of a 10 µA quiescent current opamp.
Hiroshi YOSHIDA Takehiko TOYODA Ichiro SETO Ryuichi FUJIMOTO Osamu WATANABE Tadashi ARAI Tetsuro ITAKURA Hiroshi TSURUMI
A fully differential direct conversion receiver IC for W-CDMA is presented. The receiver IC consists of an LNA, a quadrature demodulator, low-pass filters (LPFs), and variable gain amplifiers (VGAs). In order to suppress DC offset, which is the most important issue in a direct conversion system, an active harmonic mixer is applied to the quadrature demodulator. Furthermore, a receiving system, including the LNA and an RF filter, adopts a differential architecture to reduce local signal leakage, which generates DC offset. Performance of the entire receiving system was evaluated and DC offset in steady state was measured at only 40 mV. Moreover, DC offset variation at the LNA gain change, which has the largest affect on the receiving performance, was limited to 70 mV, which is less than -10 dB compared to desired signal strength. It was confirmed by computer simulation that the DC offset variation at the LNA gain change did not degrade bit error rate (BER) performance at all.
Takeshi UENO Tomohiko ITO Daisuke KUROSE Takafumi YAMAJI Tetsuro ITAKURA
This paper describes 10-bit, 80-MSample/s pipelined A/D converters for wireless-communication terminals. To reduce power consumption, we employed the I/Q amplifier sharing technique [1] in which an amplifier is used for both I and Q channels. In addition, common-source, pseudo-differential (PD) amplifiers are used in all the conversion stages for further power reduction. Common-mode disturbances are removed by the proposed common-mode feedforward (CMFF) technique without using fully differential (FD) amplifiers. The converter was implemented in a 90-nm CMOS technology, and it consumes only 24 mW/ch from a 1.2-V power supply. The measured SNR and SNDR are 58.6 dB and 52.2 dB, respectively.
Toshiyuki UMEDA Shoji OTAKA Kenji KOJIMA Tetsuro ITAKURA
This paper describes a low-power-supply 2-GHz CMOS up-converter. A current-mode mixing method using current adding and self-switching mixers is proposed for 1-V operation. The current-mode up-converter achieves conversion gain of 6.7 dB and linearity of 6.5-dBm OIP3 at 1 V. Balanced configuration and DC offset canceller reduce LO leakage below -40 dBc even with 20-mV Vth mismatches. The bias circuit of the IC is designed to maintain constant conversion gain for variation of temperature for practical usage. The measurement results indicate the proposed up-converter is applicable for future wireless systems.
Zdzis taw CZARNUL Tetsuro ITAKURA Noriaki DOBASHI Takashi UENO Tetsuya IIDA Hiroshi TANIMOTO
The system architectures, which allow a high performance fully balanced (FB) system based on ordinary/modified single-ended opamps to be implemented, are investigated and the basic and general requirements are formulated. Two new methods of an FB analog system design, which contribute towards achieving both a high performance IC system implementation and a great reduction of the design time are presented. It is shown that a single-ended system based on any type of opamp (rail-to-rail, constant gm, etc. ), realized in any technology (CMOS, bipolar, BiCMOS, GaAs), can be easily and effectively converted to its FB counterpart in a very practical way. Using the proposed rules, any FB system implementation with opamps (data converter, modulator, filter, etc. ) requires only a single-ended system version design and the drawbacks related to a conventional FB system design are avoided. The principles of the design are pointed out and they are verified by experimental results.
This paper describes an efficient slew rate enhancement technique especially suitable for an operational amplifier used in an LCD driver IC. This technique employs an input-dependent biasing without directly monitoring an input; instead, monitoring an output of the first stage of the amplifier. This enhancement technique is easily applied to a conventional two-stage operational amplifier and requires only 8 additional transistors to increase slew rates for both rising and falling edges. The bias currents of the first and the second stages are simultaneously controlled by this biasing. Experimental operational amplifiers with and without this enhancement have been fabricated to demonstrate the improvement of slew rate. Slew rates of 12.5V/µsec for the rising edge and 50V/µsec for the falling edge with a 100 pF load capacitance have been achieved by this technique, compared with slew rates of 0.3V/µsec for the rising edge and 5V/µsec for the falling edge in the conventional amplifier.
Tetsuro ITAKURA Hironori MINAMIZAKI
An LCD Driver IC includes more than 300 buffer amplifiers on a single chip. The phase compensation capacitors (on-chip Miller capacitors) for the amplifiers are more than 1000 pF and occupy a large chip area. This paper describes a two-gain-stage amplifier in which an on-chip Miller capacitor is not used for phase compensation in an LCD Driver IC. In the proposed amplifier, phase compensation is achieved only by a newly introduced zero, which is formed by the load capacitance and a phase compensation resistor connected between the output of the amplifier and the capacitive load. Designs of the phase compensation resistor and the amplifier before compensation are discussed, considering a typical load capacitance range. The test chip was fabricated. The newly introduced zero successfully stabilized the amplifier. The chip area for the amplifier was reduced by 30-40%, compared with our previously reported one. The current consumption of the amplifier was only 5 µA. The experimental results of the fabricated test chip support that the proposed amplifier is suitable to an LCD driver IC with a smaller chip area.
Tetsuro ITAKURA Takeshi SHIMA Shigeru YAMADA Hironori MINAMIZAKI
This paper describes a segment driver IC for high-quality liquid-crystal-displays (LCDs). Major design issues in the segment driver IC are a wide signal bandwidth and excessive output-offset variation both within a chip and between chips. After clarifying the trade-off relation between the signal bandwidth and the output-offset variation originated from conventional sample-and-hold (S/H) circuits, two wide-band S/H circuits with low output-offset variation have been introduced. The basic ideas for the proposed S/H circuits are to improve timing of the sampling pulses applied to MOS analog switches and to prevent channel charge injection onto a storage capacitor when the switches turn off. The inter-chip offset-cancellation technique has been also introduced by using an additional S/H circuit. Two test chips were implemented using the above S/H circuits for demonstration purposes. The intra-chip output-offset standard deviation of 9.5 mVrms with a 3dB bandwidth of 50 MHz was achieved. The inter-chip output-offset standard deviation was reduced to 5.1 mVrms by using the inter-chip offset-cancellation technique. The evaluation of picture quality of an LCD using the chips shows the applicability of the proposed approaches to displays used for multimedia applications.
Hiroshi YOSHIDA Takehiko TOYODA Makoto ARAI Ryuichi FUJIMOTO Toshiya MITOMO Masato ISHII Rui ITO Tadashi ARAI Tetsuro ITAKURA Hiroshi TSURUMI
A direct conversion receiver for W-CDMA, which consumes extremely low power, is presented. The receiver consists of a low-noise amplifier (LNA) IC, a receiver IC and other passive components such as an RF-SAW (Surface Acoustic Wave) filter. The receiver IC includes a quadrature demodulator (QDEM) with a local oscillator (LO) divider, low-pass filters (LPFs) for channel selection, variable gain amplifiers (VGAs) with dynamic range of 80 dB, and a fractional-N synthesizer. The power consumption for the entire receiver chain was only 30.8 mA at supply voltage of 2.7 V.
A 0.9-V 12-bit 40-MSPS pipeline ADC with I/Q amplifier sharing technique is presented for wireless receivers. To achieve high linearity even at 0.9-V supply, the clock signals to sampling switches are boosted over 0.9 V in conversion stages. The clock-boosting circuit for lifting these clocks is shared between I-ch ADC and Q-ch ADC, reducing the area penalty. Low supply voltage narrows the available output range of the operational amplifier. A pseudo-differential (PD) amplifier with two-gain-stage common-mode feedback (CMFB) is proposed in views of its wide output range and power efficiency. This ADC is fabricated in 90-nm CMOS technology. At 40 MS/s, the measured SNDR is 59.3 dB and the corresponding effective number of bits (ENOB) is 9.6. Until Nyquist frequency, the ENOB is kept over 9.3. The ADC dissipates 17.3 mW/ch, whose performances are suitable for ADCs for mobile wireless systems such as WLAN/WiMAX.
A Gm-C filter using multiple-output transconductors suitable for reducing the chip area and power consumption is presented. The novel multiple-output transconductor is based on a translinear gain cell with a linearized input stage. Making good use of the linearized input stage, a simple common-mode feedback is also proposed for this multiple-output transconductor. Using the proposed technique, a 5th-order lowpass filter with two transmission zeros was designed and fabricated as a main part of a lowpass channel selection filter for UMTS receivers. A channel of the filter consumes 7 mA from a 2.7 V power supply and the integrated input-referred noise was 21 dBuV with 20 dB pass band gain. The proposed multiple-output technique saves roughly half the number of transconductors compared with the typical active ladder filter design. The proposed multiple-output transconductors achieve linearization and effective reduction while saving linearized input stages. They are suitable for a filter with small power consumption and small area.
Takafumi YAMAJI Tetsuro ITAKURA
A CMOS programmable gain amplifier (PGA) with a swiched capacitor offset compensation circuit is described. The mean compensation error is 130µV at the input, and the standard deviation of the compensation error is 50µV. This PGA is applicable to a baseband amplifier for digital radio communication terminals.
Osamu WATANABE Takafumi YAMAJI Tetsuro ITAKURA Ichiro HATTORI
A 2-GHz down-converter for wide-band wireless communication systems is described. To achieve both wide-band output characteristic and LO signal suppression, an on-chip LC series resonator which is resonated at LO signal frequency and a transimpedance amplifier which is used in the output buffer circuit are used. To achieve a low sensitivity to temperature, two kinds of bias circuits; a VT reference current source and a bandgap reference current source are used. The measured 3-dB bandwidth of 600 MHz is achieved. The conversion gain varies less than 0.2 dB within 200 MHz 10 MHz and 400 MHz 10 MHz band and 0.7 dB for the temperature range from -34 to 85. At room temperature, conversion gain of 15 dB, NF of 9.5 dB and IIP3 of -5 dBm are obtained respectively. The down-converter is fabricated using Si BiCMOS process with ft=20 GHz, and it occupies approximately 1 mm2.
Masanori FURUTA Hidenori OKUNI Masahiro HOSOYA Akihide SAI Junya MATSUNO Shigehito SAIGUSA Tetsuro ITAKURA
This paper presents an analog front-end circuit for a 60-GHz proximity wireless communication receiver. The feature of the proposed analog front-end circuit is a bandwidth more than 1-GHz wide. To expand the bandwidth of a low-pass filter and a voltage gain amplifier, a technique to reduce the parasitic capacitance of a transconductance amplifier is proposed. Since the bandwidth is also limited by on-resistance of the ADC sampling switch, a switch separation technique for reduction of the on-resistance is also proposed. In a high-speed ADC, the SNDR is limited by the sampling jitter. The developed high resolution VCO auto tuning effectively reduces the jitter of PLL. The prototype is fabricated in 65nm CMOS. The analog front-end circuit achieves over 1-GHz bandwidth and 27.2-dB SNDR with 224mW Power consumption.
Osamu WATANABE Mitsuyuki ASHIDA Tetsuro ITAKURA Shoji OTAKA
A linear-in-dB VGA of the current-divider type is fabricated in 0.25 µm CMOS technology. Two gain compensation techniques are proposed in order to compensate the gain deviations due to a MOSFET which has a square-law characteristic or an exponential-law characteristic determined by its current density. Temperature compensation techniques are also proposed. Measure results obtained at 380 MHz are a gain range of 80 dB, a gain error of 3 dB, and an NF of 11 dB.
A linear-in-dB gain-control amplifier for direct conversion systems employs linearized transconductors in a core amp, a dc offset canceler, and a gain control circuit. The offset compensation circuit achieves a constant corner frequency over a gain range of 14 to 76 dB by simultaneous tuning of the transconductors.