Akira FUJIMAKI Daiki HASEGAWA Yuto TAKESHITA Feng LI Taro YAMASHITA Masamitsu TANAKA
Yihao WANG Jianguo XI Chengwei XIE
Feng TIAN Zhongyuan ZHOU Guihua WANG Lixiang WANG
Yukihiro SUZUKI Mana SAKAMOTO Taiyou NAGASHIMA Yosuke MIZUNO Heeyoung LEE
Yo KUMANO Tetsuya IIZUKA
Wisansaya JAIKEANDEE Chutiparn LERTVACHIRAPAIBOON Dechnarong PIMALAI Kazunari SHINBO Keizo KATO Akira BABA
Satomitsu Imai Shoya Ishii Nanako Itaya
Satomitsu Imai Takekusu Muraoka Kaito Tsujioka
Takahide Mizuno Hirokazu Ikeda Hiroki Senshu Toru Nakura Kazuhiro Umetani Akihiro Konishi Akihito Ogawa Kaito Kasai Kosuke Kawahara
Yongshan Hu Rong Jin Yukai Lin Shunmin Wu Tianting Zhao Yidong Yuan
Kewen He Kazuya Kobayashi
Tong Zhang Kazuya Kobayashi
Yuxuan PAN Dongzhu LI Mototsugu HAMADA Atsutake KOSUGE
Shigeyuki Miyajima Hirotaka Terai Shigehito Miki
Xiaoshu CHENG Yiwen WANG Hongfei LOU Weiran DING Ping LI
Akito MORITA Hirotsugu OKUNO
Chunlu WANG Yutaka MASUDA Tohru ISHIHARA
Dai TAGUCHI Takaaki MANAKA Mitsumasa IWAMOTO
Kento KOBAYASHI Riku IMAEDA Masahiro MORIMOTO Shigeki NAKA
Yoshinao MIZUGAKI Kenta SATO Hiroshi SHIMADA
Baoquan ZHONG Zhiqun CHENG Minshi JIA Bingxin LI Kun WANG Zhenghao YANG Zheming ZHU
Kazuya TADA
Suguru KURATOMI Satoshi USUI Yoko TATEWAKI Hiroaki USUI
Yoshihiro NAKA Masahiko NISHIMOTO Mitsuhiro YOKOTA
Tsuneki YAMASAKI
Kengo SUGAHARA
Cuong Manh BUI Hiroshi SHIRAI
Hiroyuki DEGUCHI Masataka OHIRA Mikio TSUJI
Yongzhe Wei Zhongyuan Zhou Zhicheng Xue Shunyu Yao Haichun Wang
Mio TANIGUCHI Akito IGUCHI Yasuhide TSUJI
Kouji SHIBATA Masaki KOBAYASHI
Zhi Earn TAN Kenjiro MATSUMOTO Masaya TAKAGI Hiromasa SAEKI Masaya TAMURA
Koya TANIKAWA Shun FUJII Soma KOGURE Shuya TANAKA Shun TASAKA Koshiro WADA Satoki KAWANISHI Takasumi TANABE
Satoru KUROKAWA Junichiro ICHIKAWA Tetsuya KAWANISHI Hiroyo OGAWA
This paper describes the outline of recent standardization activities for Radio on Fiber (RoF) transmitter by IEC TC103/WG5. RoF transmitter consists of optical fibers, electrical to optical (E/O) converter, and optical to electrical (O/E) converter. IEC TC103/WG5 is working on standardization on measurement method of E/O and O/E devices, and technical specification of RoF transmitter. This paper overviews those standardization activities which are being developed by TC103/WG5 as well as the National Committee of WG5.
Changsoon CHOI Thorsten BIERMANN Qing WEI Kazuyuki KOZU Masami YABUSAKI
This paper describes mobile backhaul optical access network designs for future cellular systems, in particular, for those systems that exploit coordinated multipoints (CoMP) transmission/reception techniques. Wavelength-division-multiplexing passive optical networks (WDM-PON) are primarily considered and two proposals to enhance mobile backhaul capability of WDM-PONs for CoMP are presented. One is physical X2 links that support dedicated low latency and high capacity data exchange between base stations (BSs). The other is multicasting in WDM-PONs. It effectively reduces data/control transmission time from central node to multiple BSs joining CoMP. Evaluation results verify that the proposed X2 links and the multicasting enable more BSs to join CoMP by enhancing the mobile backhaul capability, which results in improved service quality for users.
Atsushi KANNO Pham TIEN DAT Toshiaki KURI Iwao HOSAKO Tetsuya KAWANISHI Yoshihiro YASUMURA Yuki YOSHIDA Ken-ichi KITAYAMA
We propose a coherent optical and radio seamless network concept that allows broadband access without deployment of additional optical fibers within an optical fiber dead zone while enhancing network resilience to disasters. Recently developed radio-over-fiber (RoF) and digital coherent detection technologies can seamlessly convert between optical and radio signals. A millimeter-wave radio with a capacity greater than 10 Gb/s and high-speed digital signal processing is feasible for this purpose. We provide a preliminary demonstration of a high-speed, W-band (75–110 GHz) radio that is seamlessly connected to an optical RoF transmitter using a highly accurate optical modulation technique to stabilize the center frequencies of radio signals. Using a W-band digital receiver with a sensitivity of -37 dBm, we successfully transmitted an 18.6 Gb/s quadrature-phase-shift-keying signal through both air and an optical fiber.
In this paper, a novel interference suppression technique from added RoF (Radio-on-Fiber) system is proposed. In general RoF system, received RF (radio frequency) signal intensity is periodically varied depending on chromatic dispersion that is known as fading phenomenon. In proposed technique null points of this fading phenomenon are intentionally applied to minimize signal interferences. This technique can realize two types of multiplexing RoF signal. In the first configuration, a single optical carrier is modulated twice using two optical modulators connected in series. In second configuration, new RoF signal is added to the existing network using individual light source. Multiplexing RoF signals of 10 GHz-band with data of 30 Mbps 64QAM is experimentally demonstrated.
Tatsuhiko IWAKUNI Kenji MIYAMOTO Takeshi HIGASHINO Katsutoshi TSUKAMOTO Shozo KOMAKI Takayoshi TASHIRO Youichi FUKADA Jun-ichi KANI Naoto YOSHIMOTO Katsumi IWATSUKI
Radio on fiber (RoF) – distributed antenna system (DAS) over wavelength division multiplexing – passive optical network (WDM-PON) with multiple – input multiple – output (MIMO) has been proposed as a next generation radio access network (RAN). The system employs optical time division multiplexing (OTDM) over one WDM channel as a backhaul for RAN to flexibly transmit various types of radio air interfaces. To cover a wider wireless service area, the WDM-PON has a combination of double and bus topologies. This paper analyses the channel capacity in the MIMO cell provided by the RoF-DAS over WDM-PON with computer simulation considering noise power added in the RoF link, and discusses the trade-off between losses in RoF and wireless channel appeared in the channel capacity. Then, this paper clarifies a method to derive the optimal cell size to obtain the highest channel capacity.
Ke WANG Ampalavanapillai NIRMALATHAS Christina LIM Efstratios SKAFIDAS
In this paper, we propose a high-speed full-duplex optical wireless communication system using a single channel imaging receiver for personal area network applications. This receiver is composed of an imaging lens, a small sensitive-area photodiode, and a 2-aixs actuator and it can reject most of the background light. Compared with the previously proposed system with single wide field-of-view (FOV) non-imaging receiver, the coverage area at 12.5 Gb/s is extended by > 20%. Furthermore, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. In addition, by pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced. Proof-of-concept experiments have been carried out and the results show that with this partial searching algorithm and pre-set threshold, better performance is achieved.
Naokatsu YAMAMOTO Kouichi AKAHANE Tetsuya KAWANISHI Hideyuki SOTOBAYASHI Yuki YOSHIOKA Hiroshi TAKAI
The quantum dot optical frequency comb laser (QD-CML) is an attractive photonic device for generating a stable emission of fine multiple-wavelength peaks. In the present paper, 1.0-GHz and
Isao MOROHASHI Yoshihisa IRIMAJIRI Takahide SAKAMOTO Tetsuya KAWANISHI Motoaki YASUI Iwao HOSAKO
We propose a method of the precise frequency tuning in millimeter wave (MMW) generation using a Mach-Zehnder-modulator-based flat comb generator (MZ-FCG). The MZ-FCG generates a flat comb signal where the comb spacing is exactly the same as the frequency of a radio-frequency signal driving the MZ-FCG. Two modes are extracted from the comb signal by using optical filters. One of them was modulated by a phase modulator, creating precisely frequency-controllable sidebands. In the experiment, typical phase modulation was used. By photomixing of the extracted two modes using a high-speed photodiode, MMW signals with precisely frequency-controllable sidebands are generated. By changing the modulation frequency, the frequency of MMW signals can be continuously tuned. In this scheme, there are two methods for the frequency tuning of MMW signals; one is a coarse adjustment which corresponds to the comb spacing, and the other is fine tuning by the phase-modulation. It was demonstrated that the intensity fluctuation of the upper sideband of the modulated MMW signal was less than 1 dB, and the frequency fluctuation was less than the measurement resolution (300 Hz).
Zhaohui LI Haiyan SHANG Xinhuan FENG Jianping LI Dejun FENG Bai-ou GUAN
A large-range switchable RF signal generator is demonstrated using a triple-wavelength fiber laser with uneven-frequency-spacing. Due to the birefringence characteristics of the triple-wavelength fiber laser, switchable dual-wavelength operation can be obtained by adjusting a polarization controller. Therefore, we can achieve a stable RF signals at microwave or millimeter-wave band.
Junichi HAMAZAKI Norihiko SEKINE Iwao HOSAKO
To obtain an ultra-short high-intensity pulse source, we investigated the amplification characteristics of two types of pulses (dissipative soliton and stretched pulses) produced by our Yb-doped fiber laser oscillator. Our results show that the dissipative soliton pulse can be amplified with less deterioration than the stretched pulse.
Naohiro KOHMU Hiroshi MURATA Yasuyuki OKAMURA
We propose new electro-optic modulators using a double antenna-coupled electrode structure for radio-over-fiber systems. The proposed modulators are composed of a pair of patch antennas and a standing-wave resonant electrode. By utilizing a pair of patch antennas on SiO2 substrates and a coupled-microstrip line resonant electrode on a LiNbO3 substrate with a symmetric configuration, high-efficiency optical modulation is obtainable for 2
Yusuf Nur WIJAYANTO Hiroshi MURATA Yasuyuki OKAMURA
Quasi-phase-matching (QPM) electro-optic modulators using gap-embedded patch-antennas were proposed for improving wireless microwave-optical signal conversion. The proposed QPM devices can receive wireless microwave signals and convert them to optical signals directly. The QPM structures enable us to have twice antenna elements in the fixed device length. The device operations with improved conversion efficiency of
Kentaro KAWANISHI Kazuyoshi ITOH Tsuyoshi KONISHI
We report a 40-Gb/s and highly accurate intensity limiter with a single Erbium-Doped Fiber Amplifier (EDFA) for low-power-consumption driving intensity limiting. The intensity limiter based on self-phase modulation with an appropriate pre-chirping procedure makes it possible, which provides a highly accurate limiting of less than 0.01 dB. We fed 40-Gb/s signals with 2.69 dB intensity fluctuation and 4.7 dB improvement on the receiver sensitivity was obtained for a bit error rate of 10-9 by using a numerical simulation.
Takema SATOH Kazuyoshi ITOH Tsuyoshi KONISHI
We report a trial of 100-GS/s optical quantization with 5-bit resolution using soliton self-frequency shift (SSFS) and spectral compression. We confirm that 100-GS/s 5-bit optical quantization is realized to quantize a 5.0-GHz sinusoid electrical signal in simulation. In order to experimentally verify the possibility of 100-GS/s 5-bit optical quantization, we execute 5-bit optical quantization by using two sampled signals with 10-ps intervals.
Hiroyoshi TOGO David MORENO-DOMINGUEZ Naoya KUKUTSU
This article describes the frequency response and the applications of the optical electric-field sensor consisting of a 1 mm
This paper describes two promising millimeter-wave measurement techniques suitable for biological materials. One is reflection-geometry imaging using a low-coherence signal, and the other is millimeter-wave ellipsometry. Imaging porcine tissue during the desiccation process, we found the temporal variation of the reflection intensity to be well explained by an exponential decrease of the relative dielectric constant. Ellipsometry results showed that the complex relative dielectric constant also decreased exponentially with time during the desiccation process and that for bovine tissue the gradients for the real and imaginary parts of the constant were different. The implications of these results on the distribution of water in biological tissues are discussed.
Ryuta YAMANAKA Taka FUJITA Hideyuki SOTOBAYASHI Atsushi KANNO Tetsuya KAWANISHI
We evaluated the single side-band phase noise of a 40 GHz beat signal generated by two free-running lasers. This allowed us to verify the utility of the two free-running lasers is verified as a light source for a next-generation radio-over-fiber system using frequency such as those in the millimeter-wave and terahertz bands. We also measured the phase noise of a frequency quadrupler using a Mach-Zehnder modulator for comparison. The phase noise of the two free-running lasers and the frequency quadrupler are -63.85 and -95.22 dBc/Hz at a 10 kHz offset frequency, respectively.
The author developed a wideband precise I/Q modulator using GaAs pHEMT technology. In this technology, pHEMT has 0.22 µm metallurgical gate length and ft=51 GHz at Vds=5V. With the careful design of the wideband phase shifter, this IQ modulator achieved a large wideband frequency range of 250 MHz to 8 GHz and good EVM performance after calibration. For overall frequency range, low distortion performance is obtained, where third order intermodulation is less than -42 dBc. Also the ACPR at 2.2 GHz for W-CDMA application is less than -74 dBc.
Hsiao-Chin CHEN Shu-Wei CHANG Bo-Rong TU
A LNA, an RF front-end and a 6th–order complex BPF for reconfigurable low-IF receivers are demonstrated in this work. Due to the noise cancellation, the two-stage LNA presents a low NF of 2.8 to 3.3 dB from 0.8 to 6 GHz. Moreover, the LNA delivers two kinds of gain curves with IIP3 of -2.6 dBm by employing the capacitive degeneration and the resistive gain-curve shaping in the second stage. The flicker noise corner frequency of the down-converter has been considered and the measured fC of the RF front-end is 200 kHz. The RF front-end also provides two kinds of gain curves. For the low-frequency mode, the conversion gain is 28.8
Ramesh K. POKHAREL Prapto NUGROHO Awinash ANAND Abhishek TOMAR Haruichi KANAYA Keiji YOSHIDA
High phase noise is a common problem in ring oscillators. Continuous conduction of the transistor in an analog tuning method degrades the phase noise of ring oscillators. In this paper, a digital control tuning which completely switches the transistors on and off, and a 1/f noise reduction technique are employed to reduce the phase noise. A 14-bit control signal is employed to obtain a small frequency step and a wide tuning range. Furthermore, multiphase ring oscillator with a sub-feedback loop topology is used to obtain a stable quadrature outputs with even number of stages and to increase the output frequency. The measured DCO has a frequency tuning range from 554 MHz to 2.405 GHz. The power dissipation is 112 mW from 1.8 V power supply. The phase noise at 4 MHz offset and 2.4 GHz center frequency is -134.82 dBc/Hz. The FoM is -169.9 dBc/Hz which is a 6.3 dB improvement over the previous oscillator design.
Ramesh K. POKHAREL Xin LIU Dayang A.A. MAT Ruibing DONG Haruichi KANAYA Keiji YOSHIDA
This paper presents the design of a second-order and a fourth-order bandpass filter (BPF) for 60 GHz millimeter-wave applications in 0.18 µm CMOS technology. The proposed on-chip BPFs employ the folded open loop structure designed on pattern ground shields. The adoption of a folded structure and utilization of multiple transmission zeros in the stopband permit the compact size and high selectivity for the BPF. Moreover, the pattern ground shields obviously slow down the guided waves which enable further reduction in the physical length of the resonator, and this, in turn, results in improvement of the insertion losses. A very good agreement between the electromagnetic (EM) simulations and measurement results has been achieved. As a result, the second-order BPF has the center frequency of 57.5 GHz, insertion loss of 2.77 dB, bandwidth of 14 GHz, return loss less than 27.5 dB and chip size of 650 µm
Ji-Hoon LIM Won-Young JUNG Yong-Ju KIM Inchae SONG Jae-Kyung WEE
We suggest a novel digitally-controlled SMPS using a high-resolution DPWM generator. In the proposed circuit, the duty ratio of the DPWM is determined by the voltage slope control of an internal capacitor using a pseudo relaxation-oscillation technique. This new control method has a simpler structure, and consumes less power compared to a conventional digitally-controlled SMPS. Therefore, the proposed circuit is able to operate at a high switching frequency (1 MHz
Hiroyuki OGATA Kenji ICHIJO Kenji KONDO Akito HARA
A multigate polycrystalline-silicon (poly-Si) thin-film transistor (TFT) is a recently popular topic in the field of Si devices. In this study, self-aligned planar metal double-gate poly-Si TFTs consisting of an embedded bottom metal gate, a top metal gate fabricated by a self-alignment process, and a lateral poly-Si film with a grain size greater than 2 µm were fabricated on a glass substrate at 550
We have investigated on a random-texturing process for multi-crystalline Si solar cells by plasmaless dry etching, with chlorine trifluoride (ClF3) gas treatments. The reflectance of textured surfaces was reduced to below 20% at a wavelength of 600 nm. In this study, we tried to improve the electrical characteristics by modifying the fabrication process. The substrate surfaces were dry etched by chlorine trifluoride gas and subsequently etched with an acid solution to form appropriate textured structures. The improved electrical characteristics were demonstrated.
Incheol KIM Ingeol LEE Sungho KANG
This paper proposes a new BIST (Built-In Self-Test) method for static testing of an ADC (Analog-to-Digital Converter) with transition detection method. The proposed BIST uses a triangle-wave as an input test stimulus and calculates the ADC's static parameters. Simulation results show that the proposed BIST can test both rising and falling transitions with minimal hardware overhead.