IEICE TRANSACTIONS on Fundamentals

  • Impact Factor

    0.40

  • Eigenfactor

    0.003

  • article influence

    0.1

  • Cite Score

    1.1

Advance publication (published online immediately after acceptance)

Volume E98-A No.5  (Publication Date:2015/05/01)

    Regular Section
  • A Low Power and Hardware Efficient Syndrome Key Equation Solver Architecture and Its Folding with Pipelining

    Kazuhito ITO  

     
    PAPER-VLSI Design Technology and CAD

      Page(s):
    1058-1066

    Syndrome key equation solution is one of the important processes in the decoding of Reed-Solomon codes. This paper proposes a low power key equation solver (KES) architecture where the power consumption is reduced by decreasing the required number of multiplications without degrading the decoding throughput and latency. The proposed method employs smaller number of multipliers than a conventional low power KES architecture. The critical path in the proposed KES circuit is minimized so that the operation at a high clock frequency is possible. A low power folded KES architecture is also proposed to further reduce the hardware complexity by executing folded operations in a pipelined manner with a slight increase in decoding latency.

  • Fast Transient Simulation of Large Scale RLC Networks Including Nonlinear Elements with SPICE Level Accuracy

    Yuichi TANJI  

     
    PAPER-VLSI Design Technology and CAD

      Page(s):
    1067-1076

    Fast simulation techniques of large scale RLC networks with nonlinear devices are presented. Generally, when scale of nonlinear part in a circuit is much less than the linear part, matrix or circuit partitioning approach is known to be efficient. In this paper, these partitioning techniques are used for the conventional transient analysis using an implicit numerical integration and the circuit-based finite-difference time-domain (FDTD) method, whose efficiency and accuracy are evaluated developing a prototype simulator. It is confirmed that the matrix and circuit partitioning approaches do not degrade accuracy of the transient simulations that is compatible to SPICE, and that the circuit partitioning approach is superior to the matrix one in efficiency. Moreover, it is demonstrated that the circuit-based FDTD method can be efficiently combined with the matrix or circuit partitioning approach, compared with the transient analysis using an implicit numerical integration.

  • Approximation Method for Obtaining Availability of a Two-Echelon Repair System with Priority Resupply

    Yosuke AIZU  Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Page(s):
    1077-1084

    We propose a reality-based model of a two-echelon repair system with “priority resupply” and present a method for analyzing the availability of the system operated in each base. The two echelon repair system considered in our model consists of one repair station, called depot, and several bases. In each base, n items which constitute a k-out-of-n: G system, called k/n system, are operated. Each item has two failure modes, failures repaired at a base (level 1) and failures repaired at the depot (level 2). When a level 2 failure occurs in a base, either a normal order or an emergency order of a spare item is issued depending on the number of operating items in the base. The spare item in the depot is sent preferentially to the base where the emergency order is placed. We propose two models, both including priority resupply. Firstly, we propose an approximation method for analyzing the basic model where a k/n system is operated in a base. Using a simulation method, we verify the accuracy of our approximation method. Secondly, we expand the basic model to a dual k/n system where the items of the system are interchangeable between two k/n systems in the case of an emergency, which is called “cannibalization”. Then, we show a numerical example and discuss the optimal timing for placing an emergency order.

  • Capacity Maximization for Short-Range Millimeter-Wave Line-of-Sight TIMO Channels

    Haiming WANG  Rui XU  Mingkai TANG  Wei HONG  

     
    PAPER-Information Theory

      Page(s):
    1085-1094

    The capacity maximization of line-of-sight (LoS) two-input and multiple-output (TIMO) channels in indoor environments is investigated in this paper. The 3×2 TIMO channel is mainly studied. First, the capacity fluctuation number (CFN) which reflects the variation of channel capacity is proposed. Then, the expression of the average capacity against the CFN is derived. The CFN is used as a criterion for optimization of the capacity by changing inter-element spacings of transmit and receive antenna arrays. Next, the capacity sensitivity of the 3×2 TIMO channel to the orientation and the frequency variation is studied and compared with those of 2×2 and 4×2 TIMO channels. A small capacity sensitivity of the 3×2 TIMO channel is achieved and verified by both simulation and measurement results. Furthermore, the CFN can also be used as a criterion for optimization of average capacity and the proposed optimization method is validated through numerical results.

  • Tomlinson-Harashima Precoding with Substream Permutations Based on the Bit Rate Maximization for Single-User MIMO Systems

    Shigenori KINJO  Shuichi OHNO  

     
    PAPER-Communication Theory and Signals

      Page(s):
    1095-1104

    In this paper, we propose a zero-forcing (ZF) Tomlinson-Harashima precoding (THP) with substream permutations based on the bit rate maximization for single-user MIMO (SU-MIMO) systems. We study the effect of substream permutations on the ZF-THP SU-MIMO systems, when the mean squared error (MSE) and the bit rate are adopted for the selection of the permutation matrix as criteria. Based on our analysis, we propose a method to increase the bit rate by substream permutations, and derive QR and Cholesky decomposition-based algorithms which realize the proposed method. Furthermore, to improve the error rate performance, we apply zero transmission to subchannels with low signal-to-noise ratios. Numerical examples are provided to demonstrate the effectiveness of the proposed THP MIMO system.

  • Timing Performance Assessment and Improvement of Forward Collision Warning

    Peachanika THAMMAKAROON  Poj TANGAMCHIT  

     
    PAPER-Intelligent Transport System

      Page(s):
    1105-1113

    We propose a systematic method for improving the response time of forward collision warning (FCW) on vehicles. First, a performance metric, called the warning lag time, is introduced. We use the warning lag time because its measurement is practical in real driving situations. Next, we discuss two ideas to improve this warning lag time, vertical and horizontal methods. The vertical method gives an additional warning, derived from the cause of a car crash, to a normal FCW system. The experiment showed that it can improve the warning lag time by an average of 0.31sec. compared with a traditional FCW system. The horizontal method uses distributed sensing among vehicles, which helps the vehicle see farther. It can also improve the warning lag time by an average of 1.08sec. compared with a single vehicle FCW.

  • Context-Based Segmentation of Renal Corpuscle from Microscope Renal Biopsy Image Sequence

    Jun ZHANG  Jinglu HU  

     
    PAPER-Image

      Page(s):
    1114-1121

    A renal biopsy is a procedure to get a small piece of kidney for microscopic examination. With the development of tissue sectioning and medical imaging techniques, microscope renal biopsy image sequences are consequently obtained for computer-aided diagnosis. This paper proposes a new context-based segmentation algorithm for acquired image sequence, in which an improved genetic algorithm (GA) patching method is developed to segment different size target. To guarantee the correctness of first image segmentation and facilitate the use of context information, a boundary fusion operation and a simplified scale-invariant feature transform (SIFT)-based registration are presented respectively. The experimental results show the proposed segmentation algorithm is effective and accurate for renal biopsy image sequence.

  • Spectral Domain Noise Modeling in Compressive Sensing-Based Tonal Signal Detection

    Chenlin HU  Jin Young KIM  Seung Ho CHOI  Chang Joo KIM  

     
    LETTER-Digital Signal Processing

      Page(s):
    1122-1125

    Tonal signals are shown as spectral peaks in the frequency domain. When the number of spectral peaks is small and the spectral signal is sparse, Compressive Sensing (CS) can be adopted to locate the peaks with a low-cost sensing system. In the CS scheme, a time domain signal is modelled as $oldsymbol{y}=Phi F^{-1}oldsymbol{s}$, where y and s are signal vectors in the time and frequency domains. In addition, F-1 and $Phi$ are an inverse DFT matrix and a random-sampling matrix, respectively. For a given y and $Phi$, the CS method attempts to estimate s with l0 or l1 optimization. To generate the peak candidates, we adopt the frequency-domain information of $ esmile{oldsymbol{s}}$ = $oldsymbol{F} esmile{oldsymbol{y}}$, where $ esmile{y}$ is the extended version of y and $ esmile{oldsymbol{y}}left(oldsymbol{n} ight)$ is zero when n is not elements of CS time instances. In this paper, we develop Gaussian statistics of $ esmile{oldsymbol{s}}$. That is, the variance and the mean values of $ esmile{oldsymbol{s}}left(oldsymbol{k} ight)$ are examined.

  • Image Authentication and Recovery through Optimal Selection of Block Types

    Chun-Hung CHEN  Yuan-Liang TANG  Wen-Shyong HSIEH  

     
    LETTER-Cryptography and Information Security

      Page(s):
    1126-1129

    In this letter, we present an authentication and recovery scheme to protect images. The image blocks are DCT transformed and then encoded with different patterns. An optimal selection is adopted to find the best pattern for each block which results in better image quality. Both the recovery and check data are embedded for data protection. The experimental results demonstrate that our method is able to identify and localize regions having been tampered with. Furthermore, good image quality for both watermarked and recovered images are effectively preserved.

  • Asymmetric Quantum Codes and Quantum Convolutional Codes Derived from Nonprimitive Non-Narrow-Sense BCH Codes

    Jianzhang CHEN  Jianping LI  Yuanyuan HUANG  

     
    LETTER-Coding Theory

      Page(s):
    1130-1135

    Nonprimitive non-narrow-sense BCH codes have been studied by many scholars. In this paper, we utilize nonprimitive non-narrow-sense BCH codes to construct a family of asymmetric quantum codes and two families of quantum convolutional codes. Most quantum codes constructed in this paper are different from the ones in the literature. Moreover, some quantum codes constructed in this paper have good parameters compared with the ones in the literature.

  • Orthogonal Linear Transform for Memoryless Nonlinear Communication Systems

    Sunzeng CAI  Saijie YAO  Kai KANG  Zhengming ZHANG  Hua QIAN  

     
    LETTER-Communication Theory and Signals

      Page(s):
    1136-1139

    In a wireless communication system, the nonlinearity of the power amplifier (PA) in the transmitter is a limiting factor of the system performance. To achieve high efficiency, the PA input signal is driven into the nonlinear region. Signals with large peak-to-power ratio (PAPR) suffer uneven distortion where large signals receive additional distortion. Orthogonal linear transformations, such as orthogonal frequency division multiplexing (OFDM) modulation, spread the nonlinear distortion evenly to each data symbol, thus improving the system performance. In this paper, we provide theoretical analysis on the benefit of orthogonal linear transform for a memoryless nonlinear communication system. We show that the multicarrier system based on orthogonal linear transform performs better than the single carrier system in the presence of nonlinearity. Simulation results validate the theoretical analysis.

  • Semi-Distributed Resource Allocation for Dense Small Cell Networks

    Hong LIU  Yang YANG  Xiumei YANG  Zhengmin ZHANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Page(s):
    1140-1143

    Small cell networks have been promoted as an enabling solution to enhance indoor coverage and improve spectral efficiency. Users usually deploy small cells on-demand and pay no attention to global profile in residential areas or offices. The reduction of cell radius leads to dense deployment which brings intractable computation complexity for resource allocation. In this paper, we develop a semi-distributed resource allocation algorithm by dividing small cell networks into clusters with limited inter-cluster interference and selecting a reference cluster for interference estimation to reduce the coordination degree. Numerical results show that the proposed algorithm can maintain similar system performance while having low complexity and reduced information exchange overheads.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.