Junnosuke HOSHIDO Tonan KAMATA Tsutomu ANSAI Ryuhei UEHARA
Shin-ichi NAKANO
Shang LU Kohei HATANO Shuji KIJIMA Eiji TAKIMOTO
Lin ZHOU Yanxiang CAO Qirui WANG Yunling CHENG Chenghao ZHUANG Yuxi DENG
Zhen WANG Longye WANG
Naohiro TODA Tetsuya NAKAGAMI
Haijun Wang Tao Hu Dongdong Chen Huiwei Yao Runze He Di Wu Zhifu Tian
Jianqiang NI Gaoli WANG Yingxin LI Siwei SUN
Rui CHENG Yun JIANG Qinglin ZHANG Qiaoqiao XIA
Ren TOGO Rintaro YANAGI Masato KAWAI Takahiro OGAWA Miki HASEYAMA
Naoki TATTA Yuki SAKATA Rie JINKI Yuukou HORITA
Kundan LAL DAS Munehisa SEKIKAWA Naohiko INABA
Menglong WU Tianao YAO Zhe XING Jianwen ZHANG Yumeng LIN
Jian ZHANG Zhao GUANG Wanjuan SONG Zhiyan XU
Shinya Matsumoto Daiki Ikemoto Takuya Abe Kan Okubo Kiyoshi Nishikawa
Kazuki HARADA Yuta MARUYAMA Tomonori TASHIRO Gosuke OHASHI
Zezhong WANG Masayuki SHIMODA Atsushi TAKAHASHI
Pierpaolo AGAMENNONE
Jianmao XIAO Jianyu ZOU Yuanlong CAO Yong ZHOU Ziwei YE Xun SHAO
Kazumasa ARIMURA Ryoichi MIYAUCHI Koichi TANNO
Shinichi NISHIZAWA Shinji KIMURA
Zhe LIU Wu GUAN Ziqin YAN Liping LIANG
Shuichi OHNO Shenjian WANG Kiyotsugu TAKABA
Yindong CHEN Wandong CHEN Dancheng HUANG
Xiaohe HE Zongwang LI Wei HUANG Junyan XIANG Chengxi ZHANG Zhuochen XIE Xuwen LIANG
Conggai LI Feng LIU Yingying LI Yanli XU
Siwei Yang Tingli Li Tao Hu Wenzhi Zhao
Takahiro FUJITA Kazuyuki WADA
Kazuma TAKA Tatsuya ISHIKAWA Kosei SAKAMOTO Takanori ISOBE
Quang-Thang DUONG Kohei MATSUKAWA Quoc-Trinh VO Minoru OKADA
Sihua LIU Xiaodong ZHU Kai KANG Li WAN Yong WANG
Kazuya YAMAMOTO Nobukazu TAKAI
Yasuhiro Sugimoto Nobukazu Takai
Ho-Lim CHOI
Weibang DAI Xiaogang CHEN Houpeng CHEN Sannian SONG Yichen SONG Shunfen LI Tao HONG Zhitang SONG
Duo Zhang Shishan Qi
Young Ghyu Sun Soo Hyun Kim Dong In Kim Jin Young Kim
Hongbin ZHANG Ao ZHAN Jing HAN Chengyu WU Zhengqiang WANG
Yuli YANG Jianxin SONG Dan YU Xiaoyan HAO Yongle CHEN
Kazuki IWAHANA Naoto YANAI Atsuo INOMATA Toru FUJIWARA
Rikuto KURAHARA Kosei SAKAMOTO Takanori ISOBE
Elham AMIRI Mojtaba JOODAKI
Qingqi ZHANG Xiaoan BAO Ren WU Mitsuru NAKATA Qi-Wei GE
Jiaqi Wang Aijun Liu Changjun Yu
Ruo-Fei Wang Jia Zhang Jun-Feng Liu Jing-Wei Tang
Yingnan QI Chuhong TANG Haiyang LIU Lianrong MA
Yi XIONG Senanayake THILAK Daisuke ARAI Jun IMAOKA Masayoshi YAMAMOTO
Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Manabu HAGIWARA
Tetsushi UETA Hiroshi KAWAKAMI Ikuro MORITA
The pendulum equation with a periodic impulsive force is investigated. This model described by a second order differential equation is also derived from dynamics of the stepping motor. In this paper, firstly, we analyze bifurcation phenomena of periodic solutions observed in a generalized pendulum equation with a periodic impulsive force. There exist two topologically different kinds of solution which can be chaotic by changing system parameters. We try to stabilize an unstable periodic orbit embedded in the chaotic attractor by small perturbations for the parameters. Secondly, we investigate the intermittent drive characteristics of two-phase hybrid stepping motor. We suggest that the unstable operations called pull-out are caused by bifurcations. Finally, we proposed a control method to avoid the pull-out by changing the repetitive frequency and stepping rate.
Tetsuya YOSHINAGA Hiroyuki KITAJIMA Hiroshi KAWAKAMI
We propose an equivalent circuit model described by the Rössler equation. Then we can consider a coupled Rössler system with a physical meaning on the connection. We consider an oscillatory circuit such that two identical Rössler circuits are coupled by a resistor. We have studied three routes to entirely and almost synchronized chaotic attractors from phase-locked periodic oscillations. Moreover, to simplify understanding of synchronization phenomena in the coupled Rössler system, we investigate a mutually coupled map that shows analogous locking properties to the coupled Rössler System.
Jiro ISHIKAWA Hisato FUJISAKA Chikara SATO
It is important to analyze a tracking or synchronizing process in Spread Spectrum (SS) receiving system. The most common SS tracking system considered here consists of pseudorandom (PN) generator, Lowpass Filter (LPE) and Voltage Controlled Oscillator (VCO). The SS receiver is to track or synchronize its local PN generator to the received PN waveform by VCO. The fundamental equation of the system is known by a second order nonlinear differential equation in terms of phase difference between local PN generator and received PN waveform. The differential equation is nonautonoumous due to PN function of time t with period T. Picking up the gain of VCO as the main parameter in the system we show that the system has bifurcation from the normal oscillation through subharmonic oscillation to finally chaos. In the final case, chaos is confirmed by investigating maximum Liapunov number and both stable and unstable manifolds.
Secure communications via chaotic synchronization is experimentally demonstrated using 3-pieces of commercial integrated circuit phase-locked loops, MC14046. Different from the conventional chaotic synchronization secure communication systems where one channel is used, our system uses two channels to send one signal to be concealed. Namely, one channel is used to send a synchronizing chaotic signal. The other channel is used to send the informational signal superimposed on the chaotic masking signal at transmitter side. The synchronizing chaotic signal is applied as a common input to two identical PLL's located at both transmitter and receiver sides. It has been shown previously by us that the VCO inputs of almost identical two PLL's driven by a common chaotic signal become chaotic, and synchronized with each other. This synchronization is only possible for those who knows exact internal configuration and exact parameter values of the PLL at transmitter side. Therefore, we can use the synchronized VCO input signal as a masking signal which can be used as a key for secure communications. The advantage of this method compared to the previous one channel method is that informational signal frequency range does not affect the quality of recovered signal. Our experiments demonstrate good masking and recovery characteristics for sinusoidal, triangular, and square waves.
Tohru IKEGUCHI Kazuyuki AIHARA
In this paper, we propose algorithm of deterministic nonlinear prediction, or a modified version of the method of analogues which was originally proposed by E.N. Lorenz (J. Atom. Sci., 26, 636-646, 1969), and apply it to the artificial time series data produced from nonlinear dynamical systems and further corrupted by superimposed observational noise. The prediction performance of the present method are investigated by calculating correlation coefficients, root mean square errors and signature errors and compared with the prediction algorithm of local linear approximation method. As a result, it is shown that the prediction performance of the proposed method are better than those of the local linear approximation especially in case that the amount of noise is large.
Tetsuo NISHI Norikazu TAKAHASHI
The number of solutions of a nonlinear equation x = sgn(Wx) is discussed. The equation is derived for the determination of equilibrium points of a kind of Hopfield neural networks. We impose some conditions on W. The conditions correspond to the case where a Hopfield neural network has n neurons arranged on a ring, each neuron has connections only from k preceding neurons and the magnitude of k connections decrease as the distance between two neurons increases. We show that the maximum number of solutions for the above case is extremely few and is independent of the number of neurons, n, if k is less than or equal to 4. We also show that the number of solutions generally increases exponentially with n by considering the case where k = n-1.
Klaus-Robert MÜLLER Jens KOHLMORGEN Klaus PAWELZIK
We present a framework for the unsupervised segmentation of time series. It applies to non-stationary signals originating from different dynamical systems which alternate in time, a phenomenon which appears in many natural systems. In our approach, predictors compete for data points of a given time series. We combine competition and evolutionary inertia to a learning rule. Under this learning rule the system evolves such that the predictors, which finally survive, unambiguously identify the underlying processes. The segmentation achieved by this method is very precise and transients are included, a fact, which makes our approach promising for future applications.
Csaba REKECZKY Akio USHIDA Tamás ROSKA
Cellular Neural Networks (CNNs) are nonlinear dynamic array processors with mainly local interconnections. In most of the applications, the local interconnection pattern, called cloning template, is translation invariant. In this paper, an optimal ring-coding method for rotation invariant description of given set of objects, is introduced. The design methodology of the templates based on the ring-codes and the synthesis of CNN analogic algorithms to detect standing and moving objects in a rotationally invariant way, discussed in detail. It is shown that the algorithms can be implemented using the CNN Universal Machine, the recently invented analogic visual microprocessor. The estimated time performance and the parallel detecting capability is emphasized, the limitations are also thoroughly investigated.
Hiromi MIYAJIMA Kazuya KISHIDA Shinya FUKUMOTO
In order to provide a fuzzy system with learning function, numerous studies are being carried out to combine fuzzy systems and neural networks. The self-tuning methods using the descent method have been proposed. The constructive and the destructive methods are more powerful than other methods using neural networks (or descent method). On the other hand the destructive method is superior in the number of rules and inference error and inferior in learning speed to the constructive method. In this paper, we propose a new learning method combining the constructive and the destructive methods. The method is superior in the number of rules, inference error and learning speed to the destructive method. However, it is inferior in learning speed to the constructive method. Therefore, in order to improve learning speed of the proposed method, simplified learning methods are proposed. Some numerical examples are given to show the validity of the proposed methods.
In this paper a priori estimation method is presented for calculating solution of convex optimization problems (COP) with some equality and/or inequality constraints by so-called Newton type homotopy method. The homotopy method is known as an efficient algorithm which can always calculate solution of nonlinear equations under a certain mild condition. Although, in general, it is difficult to estimate a priori computational complexity of calculating solution by the homotopy method. In the presented papers, a sufficient condition is considered for linear homotopy, under which an upper bound of the complexity can be estimated a priori. For the condition it is seen that Urabe type convergence theorem plays an important role. In this paper, by introducing the results, it is shown that under a certain condition a global minimum of COP can be always calculated, and that computational complexity of the calculation can be a priori estimated. Suitability of the estimation for analysing COP is also discussed.
Zheng TANG Hirofumi HEBISHIMA Okihiko ISHIZUKA Koichi TANNO
This paper describes an MOS charge-mode version of a T-Model neural-based PCM encoder. The neural-based PCM encoding networks are designed, simulated and implemented using MOS charge-mode circuits. Simulation results are given for both the T-Model and the Hopfield model CMOS charge-mode PCM encoders, and demonstrate the T-Model neural-based one performs the PCM encoding perfectly, while the Hopfield one fails to.
Yoshito OHUCHI Takahiro INOUE Hiroaki FUJINO
In this paper, a new switched-current auto-tuning filter is proposed. Switched-current (SI) is a current-mode analog sampled-data circuit technique. An SI circuit can be realized using only standard digital CMOS technologies, and is capable of realizing high frequency circuits. The proposed filter is composed of SI-OTA (operational transconductance amplifier) integrators. The gain of an SI-OTA integrator can be electronically controlled by the bias current. The proposed filter is a current controlled filter (CCF) and a PLL technique was used as its tuning method. A 2nd-order SI auto-tuning low-pass filter with 100kHz cutoff frequency was designed assuming a 2µm CMOS process. The characteristics of this SI filter and its tuning characteristics were confirmed by SPICE simulations.
Masashi TANAKA Yutaka KANEDA Shoji MAKINO Junji KOJIMA
This paper proposes a new algorithm called the fast Projection algorithm, which reduces the computational complexity of the Projection algorithm from (p+1)L+O(p3) to 2L+20p (where L is the length of the estimation filter and p is the projection order.) This algorithm has properties that lie between those of NLMS and RLS, i.e. less computational complexity than RLS but much faster convergence than NLMS for input signals like speech. The reduction of computation consists of two parts. One concerns calculating the pre-filtering vector which originally took O(p3) operations. Our new algorithm computes the pre-filtering vector recursively with about 15p operations. The other reduction is accomplished by introducing an approximation vector of the estimation filter. Experimental results for speech input show that the convergence speed of the Projection algorithm approaches that of RLS as the projection order increases with only a slight extra calculation complexity beyond that of NLMS, which indicates the efficiency of the proposed fast Projection algorithm.
Kiyoshi NISHIKAWA Hitoshi KIYA
The main purpose of this paper is to give a new representation method of the convergence characteristics of the LMS algorithm using tap-input vectors. The described representation method is an extended version of the interpretation method based on the orthogonal projection. Using this new representation, we can express the convergence characteristics in terms of tap-input vectors instead of the eigenvalues of the input signal. From this representation, we consider a general method for improving the convergence speed.
Yeong-Sheng CHEN Sheng-De WANG Kuo-Chun SU
This paper is concerned with synthesizing VLSI array processors from iterative algorithms. Our primary objective is to obtain the highest processor efficiency but not the shortest completion time. Unlike most of the previous work that assumes the index space of the given iterative algorithm to be boundless, the proposed method takes into account the effects of the boundaries of the index space. Due to this consideration, the pseudo-dependence relations are excluded, and most of the independent computations can therefore be uniformly grouped. With the method described in this paper, the index space is partitioned into equal-size blocks and the corresponding computations are systematically and uniformly mapped into processing elements. The synthesized VLSI array processors possess the attractive feature of very high processor efficiency, which, in general, is superior to what is derived from the conventional linear transformation methods.
One of the major open issues in neural network research includes a Network Designing Problem (NDP): find a polynomial-time procedure that produces minimal structures (the minimum intermediate size, thresholds and synapse weights) of multilayer threshold feed-forward networks so that they can yield outputs consistent with given sample sets of input-output data. The NDP includes as a sub-problem a Network Training Problem (NTP) where the intermediate size is given. The NTP has been studied mainly by use of iterative algorithms of network training. This paper, making use of both rate distortion theory in information theory and linear algebra, solves the NDP mathematically rigorously. On the basis of this mathematical solution, it furthermore develops a mathematical solution Procedure to the NDP that computes the minimal structure straightforwardly from the sample set. The Procedure precisely attains the minimum intermediate size, although its computational time complexity can be of non-polynomial order at worst cases. The paper also refers to a polynomial-time shortcut to the Procedure for practical use that can reach an approximately minimum intermediate size with its error measurable. The shortcut, when the intermediate size is pre-specified, reduces to a promising alternative as well to current network training algorithms to the NTP.
Kiyoshi INUI Masanobu KOMINAMI Hiroji KUSAKA
On a simple model, the quality of the security tag is simulated theoretically and experimentally. A simple correction makes both results correspond exactly and a simulation formula is provided. By using novel insulating film, a small-sized tag of high quality is developed.
In this work, a statistical analysis is performed for a simple constrained high-order Yule-Walker (YW) tone frequency estimator obtained from the first equation of the constrained high-order YW equations. Explicit expressions for its estimation bias and variance are efficiently derived by virtue of a Taylor series expansion technique. Especially, being explicit in terms of frequency, data length and Signal-to-Noise Ratio (SNR) value, the resulting bias expression can not be obtained by using the asymptotic analyses used for the parameter estimation methods. The obtained expressions are compared with their counterparts of the Pisarenko tone frequency estimator. Simulations are performed to support the theoretical results.
Hirohumi HIRAYAMA Kiyono YOSHII Hidetomo OJIMA Norikazu KAWAI Shintaro GOTOH Yuzo FUKUYAMA
The controllability and the stability of the blood clotting system are examined with the linear system analysis. The dynamic behavior of the clotting system consisting of a cascade of ten proteolytic reactions of the clotting factors with multiple positive feed back and feed forward loops is represented by the rate equations in a system of non linear ordinary differential equations with 35 variables. The time courses of concentration change in every factor are revealed by numerical integration of the rate equations. Linearization of the rate equations based on the dynamic behavior of the chemical species relevant to the nonlinear terms leads to the linear systems analysis of the clotting system to clarify the essential features of blood coagulation. It follows from the analysis that the clotting system is uncontrollable regardless of changes in any system parameters and control input and that all the chemical species of the system are uncontrollable so that the sequential reactions in the cascade proceed irreversibly, once they are activated. More over by the analysis of the eigen values, the clotting reaction as a total system was shown to be unstable which was insensitive to changes in the system parameters. These characteristic natures of clotting system must be derived in the sequential cascade reaction pattern and the inherent multiple positive feed back and feed forward regulation.
Chang Joo LEE Sang Yun LEE Choong Woong LEE
This paper presents a new learning method to improve noise tolerance in Fuzzy ART. The two weight vectors: the top-down weight vector and the bottom-up weight vector are differently updated by a weighted sum and a fuzzy AND operation. This method effectively resolves the category proliferation problem without increasing the training epochs in noisy environments.
Seiichiro MORO Yoshifumi NISHIO Shinsaku MORI
In this study, we propose a system of N Wien-bridge oscillators with the same natural frequency coupled by one resistor, and investigate synchronization phenomena in the proposed system. Because the structure of the system is different from that of LC oscillators systems proposed in our previous works, this system cannot exhibit N-phase oscillations but 3-phase and in-phase oscillations. Also in this system, we can get an extremely large number of steady phase states by changing the initial states. In particular, when N is not so large, we can get more phase states in this system than that of the LC oscillators systems. Because this system does not include any inductors and is strong against phase error this system is much more suitable for applications on VLSI compared with coupled system of van der Pol type LC oscillators.