Junnosuke HOSHIDO Tonan KAMATA Tsutomu ANSAI Ryuhei UEHARA
Shin-ichi NAKANO
Shang LU Kohei HATANO Shuji KIJIMA Eiji TAKIMOTO
Lin ZHOU Yanxiang CAO Qirui WANG Yunling CHENG Chenghao ZHUANG Yuxi DENG
Zhen WANG Longye WANG
Naohiro TODA Tetsuya NAKAGAMI
Haijun Wang Tao Hu Dongdong Chen Huiwei Yao Runze He Di Wu Zhifu Tian
Jianqiang NI Gaoli WANG Yingxin LI Siwei SUN
Rui CHENG Yun JIANG Qinglin ZHANG Qiaoqiao XIA
Ren TOGO Rintaro YANAGI Masato KAWAI Takahiro OGAWA Miki HASEYAMA
Naoki TATTA Yuki SAKATA Rie JINKI Yuukou HORITA
Kundan LAL DAS Munehisa SEKIKAWA Naohiko INABA
Menglong WU Tianao YAO Zhe XING Jianwen ZHANG Yumeng LIN
Jian ZHANG Zhao GUANG Wanjuan SONG Zhiyan XU
Shinya Matsumoto Daiki Ikemoto Takuya Abe Kan Okubo Kiyoshi Nishikawa
Kazuki HARADA Yuta MARUYAMA Tomonori TASHIRO Gosuke OHASHI
Zezhong WANG Masayuki SHIMODA Atsushi TAKAHASHI
Pierpaolo AGAMENNONE
Jianmao XIAO Jianyu ZOU Yuanlong CAO Yong ZHOU Ziwei YE Xun SHAO
Kazumasa ARIMURA Ryoichi MIYAUCHI Koichi TANNO
Shinichi NISHIZAWA Shinji KIMURA
Zhe LIU Wu GUAN Ziqin YAN Liping LIANG
Shuichi OHNO Shenjian WANG Kiyotsugu TAKABA
Yindong CHEN Wandong CHEN Dancheng HUANG
Xiaohe HE Zongwang LI Wei HUANG Junyan XIANG Chengxi ZHANG Zhuochen XIE Xuwen LIANG
Conggai LI Feng LIU Yingying LI Yanli XU
Siwei Yang Tingli Li Tao Hu Wenzhi Zhao
Takahiro FUJITA Kazuyuki WADA
Kazuma TAKA Tatsuya ISHIKAWA Kosei SAKAMOTO Takanori ISOBE
Quang-Thang DUONG Kohei MATSUKAWA Quoc-Trinh VO Minoru OKADA
Sihua LIU Xiaodong ZHU Kai KANG Li WAN Yong WANG
Kazuya YAMAMOTO Nobukazu TAKAI
Yasuhiro Sugimoto Nobukazu Takai
Ho-Lim CHOI
Weibang DAI Xiaogang CHEN Houpeng CHEN Sannian SONG Yichen SONG Shunfen LI Tao HONG Zhitang SONG
Duo Zhang Shishan Qi
Young Ghyu Sun Soo Hyun Kim Dong In Kim Jin Young Kim
Hongbin ZHANG Ao ZHAN Jing HAN Chengyu WU Zhengqiang WANG
Yuli YANG Jianxin SONG Dan YU Xiaoyan HAO Yongle CHEN
Kazuki IWAHANA Naoto YANAI Atsuo INOMATA Toru FUJIWARA
Rikuto KURAHARA Kosei SAKAMOTO Takanori ISOBE
Elham AMIRI Mojtaba JOODAKI
Qingqi ZHANG Xiaoan BAO Ren WU Mitsuru NAKATA Qi-Wei GE
Jiaqi Wang Aijun Liu Changjun Yu
Ruo-Fei Wang Jia Zhang Jun-Feng Liu Jing-Wei Tang
Yingnan QI Chuhong TANG Haiyang LIU Lianrong MA
Yi XIONG Senanayake THILAK Daisuke ARAI Jun IMAOKA Masayoshi YAMAMOTO
Zhenhai TAN Yun YANG Xiaoman WANG Fayez ALQAHTANI
Chenrui CHANG Tongwei LU Feng YAO
Takuma TSUCHIDA Rikuho MIYATA Hironori WASHIZAKI Kensuke SUMOTO Nobukazu YOSHIOKA Yoshiaki FUKAZAWA
Shoichi HIROSE Kazuhiko MINEMATSU
Toshimitsu USHIO
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Qingping YU Yuan SUN You ZHANG Longye WANG Xingwang LI
Qiuyu XU Kanghui ZHAO Tao LU Zhongyuan WANG Ruimin HU
Lei Zhang Xi-Lin Guo Guang Han Di-Hui Zeng
Meng HUANG Honglei WEI
Yang LIU Jialong WEI Shujian ZHAO Wenhua XIE Niankuan CHEN Jie LI Xin CHEN Kaixuan YANG Yongwei LI Zhen ZHAO
Ngoc-Son DUONG Lan-Nhi VU THI Sinh-Cong LAM Phuong-Dung CHU THI Thai-Mai DINH THI
Lan XIE Qiang WANG Yongqiang JI Yu GU Gaozheng XU Zheng ZHU Yuxing WANG Yuwei LI
Jihui LIU Hui ZHANG Wei SU Rong LUO
Shota NAKAYAMA Koichi KOBAYASHI Yuh YAMASHITA
Wataru NAKAMURA Kenta TAKAHASHI
Chunfeng FU Renjie JIN Longjiang QU Zijian ZHOU
Masaki KOBAYASHI
Shinichi NISHIZAWA Masahiro MATSUDA Shinji KIMURA
Keisuke FUKADA Tatsuhiko SHIRAI Nozomu TOGAWA
Yuta NAGAHAMA Tetsuya MANABE
Baoxian Wang Ze Gao Hongbin Xu Shoupeng Qin Zhao Tan Xuchao Shi
Maki TSUKAHARA Yusaku HARADA Haruka HIRATA Daiki MIYAHARA Yang LI Yuko HARA-AZUMI Kazuo SAKIYAMA
Guijie LIN Jianxiao XIE Zejun ZHANG
Hiroki FURUE Yasuhiko IKEMATSU
Longye WANG Lingguo KONG Xiaoli ZENG Qingping YU
Ayaka FUJITA Mashiho MUKAIDA Tadahiro AZETSU Noriaki SUETAKE
Xingan SHA Masao YANAGISAWA Youhua SHI
Jiqian XU Lijin FANG Qiankun ZHAO Yingcai WAN Yue GAO Huaizhen WANG
Sei TAKANO Mitsuji MUNEYASU Soh YOSHIDA Akira ASANO Nanae DEWAKE Nobuo YOSHINARI Keiichi UCHIDA
Kohei DOI Takeshi SUGAWARA
Yuta FUKUDA Kota YOSHIDA Takeshi FUJINO
Mingjie LIU Chunyang WANG Jian GONG Ming TAN Changlin ZHOU
Hironori UCHIKAWA Manabu HAGIWARA
Atsuko MIYAJI Tatsuhiro YAMATSUKI Tomoka TAKAHASHI Ping-Lun WANG Tomoaki MIMOTO
Kazuya TANIGUCHI Satoshi TAYU Atsushi TAKAHASHI Mathieu MOLONGO Makoto MINAMI Katsuya NISHIOKA
Masayuki SHIMODA Atsushi TAKAHASHI
Yuya Ichikawa Naoko Misawa Chihiro Matsui Ken Takeuchi
Katsutoshi OTSUKA Kazuhito ITO
Rei UEDA Tsunato NAKAI Kota YOSHIDA Takeshi FUJINO
Motonari OHTSUKA Takahiro ISHIMARU Yuta TSUKIE Shingo KUKITA Kohtaro WATANABE
Iori KODAMA Tetsuya KOJIMA
Yusuke MATSUOKA
Yosuke SUGIURA Ryota NOGUCHI Tetsuya SHIMAMURA
Tadashi WADAYAMA Ayano NAKAI-KASAI
Li Cheng Huaixing Wang
Beining ZHANG Xile ZHANG Qin WANG Guan GUI Lin SHAN
Soh YOSHIDA Nozomi YATOH Mitsuji MUNEYASU
Ryo YOSHIDA Soh YOSHIDA Mitsuji MUNEYASU
Nichika YUGE Hiroyuki ISHIHARA Morikazu NAKAMURA Takayuki NAKACHI
Ling ZHU Takayuki NAKACHI Bai ZHANG Yitu WANG
Toshiyuki MIYAMOTO Hiroki AKAMATSU
Yanchao LIU Xina CHENG Takeshi IKENAGA
Kengo HASHIMOTO Ken-ichi IWATA
Hiroshi FUJISAKI
Tota SUKO Manabu KOBAYASHI
Akira KAMATSUKA Koki KAZAMA Takahiro YOSHIDA
Manabu HAGIWARA
Lalla Soundous EL ALAMI Eisuke KUDOH Fumiyuki ADACHI
A wireless multi-hop virtual cellular network (VCN) was recently proposed to avoid the large peak transmit power, resulting from the high transmission rates expected for future mobile communication systems. In VCN, calls hop through several links to reach the central port, which is the gateway to the network. With the use of a routing algorithm based on the total uplink transmit power minimization criterion, the total transmit power of all the multi-hop links between the mobile terminal and the central port can be significantly reduced, in comparison with the present (single-hop) cellular network. In this paper, an "on-demand" channel assignment strategy, using the channel segregation dynamic channel allocation (CS-DCA) algorithm, is proposed for multi-hop DS-CDMA VCN. Computer simulation is conducted to evaluate the blocking probability performance and make a comparison between the VCN and the present cellular network.
Osamu TAKYU Tomoaki OHTSUKI Masao NAKAGAWA
This paper proposes a novel compressing and expanding (companding) system for OFDM wireless communications that minimizes the compression distortion and so reduces the peak power of OFDM symbols. OFDM systems suffer from large variations in instantaneous peak power. Such transients distort the signals when they are passed through a nonlinear high power amplifier (HPA) prior to transmission. Existing companding systems are far from perfect since the receiver can not accurately estimate the degree of compression applied by the transmitter and thus can not regenerate the original signal by expansion; the key problems are the band pass filter (BPF), HPA, and the noise component enhanced by the channel compensation filter. In the proposed companding system, each symbol is divided into segments, and series of consecutive segments are grouped into clusters. Each cluster is multiplied by a weight equal to the inverse of the largest instantaneous power within the cluster. The receiver estimates the weight used for each time cluster. The weights for all clusters are averaged to mitigate the weight estimation error. As a result, the proposed expander can accurately estimate the weights used and thus well suppress the compression distortion.
Koichi ADACHI Riaz ESMAILZADEH Masao NAKAGAWA
Multiple-input multiple-output (MIMO) multiplexing has recently been attracting considerable attention for increasing the transmission rate in a limited bandwidth. In MIMO multiplexing, the signals transmitted simultaneously from different transmit antennas must be separated and detected at a receiver. Maximum likelihood detection with QR-decomposition and M-algorithm (QRM-MLD) can achieve good performance while keeping computational complexity low. However, when the number of surviving symbol replica candidates in the M-algorithm is set to be small, the performance of QRM-MLD degrades compared to that of MLD because of wrong selection of surviving symbol replica candidates. Furthermore, when channel estimation is inaccurate, accurate signal ranking and QR-decomposition cannot be carried out. In this paper, we propose an iterative QRM-MLD with decision directed channel estimation to improve the packet error rate (PER) performance. In the proposed QRM-MLD, decision feedback data symbols are also used for channel estimation in addition to pilot symbols in order to improve the channel estimation accuracy. Signal detection/channel estimation are then carried out in an iterative fashion. Computer simulation results show that the proposed QRM-MLD reduces the required average received Eb/N0 for PER of 10-2 by about 1.2 dB compared to the conventional method using orthogonal pilot symbols only.
Hiroyuki ISHII Tomoki SAO Shinya TANAKA Shinsuke OGAWA Yousuke IIZUKA Takeshi NAKAMORI Takehiro NAKAMURA
In this paper, we present laboratory and field experimental results using High Speed Downlink Packet Access (HSDPA) test-beds in order to reveal the actual HSDPA performance based on key technologies such as base station (BS) scheduling, adaptive modulation and coding, hybrid automatic repeat request, and advanced receiver design. First, this paper evaluates the effects of advanced user equipment capabilities such as the maximum number of multi-codes, transmit diversity, receive diversity, and a chip equalizer. Increases in throughput of 60% and 85% due to using 10 and 15 codes were observed compared to 5 codes, respectively. The gain of 22% was obtained by applying closed-loop transmit diversity to the HSDPA network. Receive diversity improves the throughput in the region from low to high signal-to-interference ratio, and the gain of 45% was obtained by applying receive diversity to the conventional RAKE receiver. A throughput gain of approximately 17% due to the use of the chip equalizer was obtained and it was observed mainly in the high Ior/Ioc region and under multi-path conditions. Second, field experiments are conducted to elucidate the effects of multi-user diversity using a BS scheduling algorithm, and reveal that proportional fairness scheduling provides both the increase in sector throughput of 18% and a sufficient degree of fairness among users. The transmit control protocol (TCP)-level throughput performance is also investigated in order to reveal the actual end-user throughput. The results show that the throughput rate of approximately 90% of the throughput of the MAC-hs layer is achieved in the TCP layer in the laboratory experiments and in the field experiments.
Shaoyi XU Zhiquan BAI Qinghai YANG Kyung Sup KWAK
Coexisting with many concurrent narrowband services, the performance of UWB systems will be affected considerably by them. Specifically, IEEE 802.11a systems which operate around 5 GHz and overlap the band of UWB signals will interfere with UWB systems significantly. In this paper, a novel narrow-band interferences (NBI) suppression technique based on singular value decomposition (SVD) algorithm for a direct sequence ultra-wideband (DS-UWB) communication system is presented. SVD is used to approximate the interferences which then are subtracted from the received signals. The proposed technique is simple and robust. Simulation results show that the proposed new technique is very effective.
Shojiro TAKEUCHI Kaoru SEZAKI Yasuhiko YASUDA
The IEEE802.11e is a standard developed by a Task Group E of the IEEE802.11 working group and defines a MAC protocol, which provides EDCA (enhanced distributed channel access) and HCCA (HCF controlled channel access) to support differentiation service over WLAN (wireless LAN). In IEEE802.11e WLAN, real-time application such as VoIP (Voice over IP) can have more chances to access the WM (wireless medium) than non real-time application. In addition to QoS support in WLAN, power consumption is a critical issue when WLAN is used in handheld devices. For power saving in the use of real-time applications like VoIP under EDCA, U-APSD (Unscheduled Automatic Power Save Delivery) was proposed in [2] and [4]. In fact, it can save power consumption and works well when it is used for bi-directional voice connections generated at constant bit rate. However, when it is used for real-time applications like ON-OFF traffic, buffering delay at AP (access point) increases. To reduce the buffering delay, this paper proposes two mechanisms. Simulation results show that they can alleviate buffering delay generated at AP.
Katsuya NAKAHIRA Kiyoshi KOBAYASHI Masazumi UEBA
To obtain large capacity, high quality mobile satellite communication systems in the future, we must use a multi-beam that can cope with extremely high levels of frequency reuse. This paper describes a novel resource allocation algorithm for multi-beam satellite communication systems that can dynamically adapt to maximum communication capacity without compromising quality. The algorithm combines two resource allocation schemes that enable it to contend with the ever-changing user distribution and inter-beam interference conditions. The first scheme optimizes the resources amongst beams. To minimize interference, the optimal constraint conditions are clarified when all clusters share and occupy the same bandwidth completely. These constraints are used in the optimization algorithm. The second scheme manages the various required resources and adapts them to the beam gain and interference levels at various user locations within a single beam. We propose a fixed power adaptive modulation scheme to obtain stable communications. This two-layered scheme can satisfactorily allocate multi-beam satellite resources to contend with the increasing communication capacity and still improve the quality.
Tatsuya KABASAWA Keisuke NAKANO Yuta TANAKA Ikuo SATO Masakazu SENGOKU Shoji SHINODA
We investigated performance improvement in a cellular system by introducing direct communication between terminals. Previous research has indicated that direct communication efficiently uses channels; however, this is not always so. We studied two factors that affect how much efficiency improves. One is the distribution of terminals. We defined some typical distributions with localization of terminals and analyzed how the difference between the distributions affected the performance improvement by direct communication. Another factor is the mobility of terminals, because mobility shortens the length of time during which terminals are directly connected. We analyzed how mobility affected performance improvement by direct communication. For the analyses, we used some theoretical techniques.
In order to reduce the traffic load and improve the system's lifetime, a cluster-based routing protocol has attracted more attention. In cluster-based sensor networks, energy can be conserved by combining redundant data from nearby sensors into cluster head nodes before forwarding the data to the destination. The lifespan of the whole network can also be expanded by the clustering of sensor nodes and through data aggregation. In this paper, we propose a cluster-based routing protocol which uses the location information of sensors to assist in network clustering. Our protocol partitions the entire network into several clusters by a particle swarm optimization (PSO) clustering algorithm. In each cluster, a cluster head is selected to deal with data aggregation or compression of nearby sensor nodes. For this clustering technique, the correct selection of the number of clusters is challenging and important. To cope with this issue, an energy dissipation model is used in our protocol to automatically estimate the optimal number of clusters. Several variations of PSO-clustering algorithm are proposed to improve the performance of our protocol. Simulation results show that the performance of our protocol is better than other protocols.
The boundary of a distributed denial of service (DDoS) attack, one of the most threatening attacks in a wired network, now extends to wireless mobile networks, following the appearance of a DDoS attack tool targeted at mobile phones. However, the existing defense mechanisms against such attacks in a wired network are not effective in a wireless mobile network, because of differences in their characteristics such as the mobile possibility of attack agents. In this paper, we propose a proactive defense mechanism against IP spoofing traffic for mobile networks. IP spoofing is one of the features of a DDoS attack against which it is most difficult to defend. Among the various mobile networks, we focus on the Network Mobility standard that is being established by the NEMO Working Group in the IETF. Our defense consists of following five processes: speedy detection, filtering of attack packets, identification of attack agents, isolation of attack agents, and notification to neighboring routers. We simulated and analyzed the effects on normal traffic of moving attack agents, and the results of applying our defense to a mobile network. Our simulation results show that our mechanism provides a robust defense.
Akiko KUBO Shigeru TOMISATO Masaharu HATA Hitoshi YOSHINO
One of the key technologies to realize future broadband mobile communications is orthogonal frequency division multiplexing (OFDM) transmission. However, the peak-to-average power ratio (PAPR) in OFDM transmission is so much larger than that in single carrier transmission that its adoption in mobile communication systems is uncertain. This paper evaluates the transmission performance possible with iterative peak reduction to design more efficient OFDM transmitters. The PAPR reduction effect and bit error rate (BER) performance are clarified by computer simulations. We calculate the set PAPR value that achieves a target PAPR in the iterative peak reduction method. The required Eb/N0 performance is evaluated under the calculated PAPR condition. The results are effective in designing the back-off value of a transmission power amplifier given fixed transmission quality and computational complexity.
In this study, we propose an adaptive handoff scheme with dynamic hysteresis value for cellular communications, which is based on distance between the mobile station and the serving base station. Performance is evaluated in terms of the expected number of handoffs, the expected handoff delay, standard deviation of handoff location, and the expected link degradation probability as well. Numerical results and simulations show that the proposed scheme outperforms the handoff schemes with static hysteresis levels. The effect of distance error is also discussed.
Luca FANUCCI Pasquale CIAO Giulio COLAVOLPE
The most powerful channel coding schemes, namely those based on turbo codes and low-density parity-check (LDPC) Gallager codes, have in common the principle of iterative decoding. However, the relative coding structures and decoding algorithms are substantially different. This paper presents a 2048-bit, rate-1/2 soft decision decoder for a new class of codes known as Turbo Gallager Codes. These codes are turbo codes with properly chosen component convolutional codes such that they can be successfully decoded by means of the decoding algorithm used for LDPC codes, i.e., the belief propagation algorithm working on the code Tanner graph. These coding schemes are important in practical terms for two reasons: (i) they can be encoded as classical turbo codes, giving a solution to the encoding problem of LDPC codes; (ii) they can also be decoded in a fully parallel manner, partially overcoming the routing congestion bottleneck of parallel decoder VLSI implementations thanks to the locality of the interconnections. The implemented decoder can support up to 1 Gbit/s data rate and performs up to 48 decoding iterations ensuring both high throughput and good coding gain. In order to evaluate the performance and the gate complexity of the decoder VLSI architecture, it has been synthesized in a 0.18 µm standard-cell CMOS technology.
Takao HINAMOTO Ken-ichi IWATA Osemekhian I. OMOIFO Shuichi OHNO Wu-Sheng LU
The minimization problem of an L2-sensitivity measure subject to L2-norm dynamic-range scaling constraints is formulated for a class of two-dimensional (2-D) state-space digital filters. First, the problem is converted into an unconstrained optimization problem by using linear-algebraic techniques. Next, the unconstrained optimization problem is solved by applying an efficient quasi-Newton algorithm with closed-form formula for gradient evaluation. The coordinate transformation matrix obtained is then used to synthesize the optimal 2-D state-space filter structure that minimizes the L2-sensitivity measure subject to L2-norm dynamic-range scaling constraints. Finally, a numerical example is presented to illustrate the utility of the proposed technique.
Cheng-Hong YANG Li-Yeh CHUANG Cheng-Huei YANG Ching-Hsing LUO
In this paper, Morse code is selected as a communication adaptive device for persons whose hand coordination and dexterity are impaired by such ailments as amyotrophic lateral sclerosis, multiple sclerosis, muscular dystrophy, and other severe handicaps. Morse code is composed of a series of dots, dashes, and space intervals, and each element is transmitted by sending a signal for a defined length of time. A suitable adaptive automatic recognition method is needed for persons with disabilities due to their difficulty in maintaining a stable typing rate. To overcome this problem, the proposed method combines the support vector machines method with a variable degree variable step size LMS algorithm. The method is divided into five stages: tone recognition, space recognition, training process, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method elicited a better recognition rate in comparison to alternative methods from the literature.
Tomohiko ITO Daisuke KUROSE Takeshi UENO Takafumi YAMAJI Tetsuro ITAKURA
From the viewpoint of a low-power pipeline ADC design, a comparison between two conventional power reduction techniques is discussed. The comparison shows that the amplifier sharing technique has an advantage in terms of the power reduction effect. To confirm the advantage, a test chip of 10-bit 80-MSPS ADC using the amplifier sharing technique is fabricated. The test chip dissipates 55 mW at 80 MSPS (Mega Sample Per Second).
Muhammad YASSER Agus TRISANTO Jianming LU Takashi YAHAGI
This paper presents a method of simple adaptive control (SAC) using neural networks for a class of nonlinear systems with bounded-input bounded-output (BIBO) and bounded nonlinearity. The control input is given by the sum of the output of the simple adaptive controller and the output of the neural network. The neural network is used to compensate for the nonlinearity of the plant dynamics that is not taken into consideration in the usual SAC. The role of the neural network is to construct a linearized model by minimizing the output error caused by nonlinearities in the control systems. Furthermore, convergence and stability analysis of the proposed method is performed. Finally, the effectiveness of the proposed method is confirmed through computer simulation.
Broadcast encryption technology enables a sender to send information securely to a group of receivers excluding specified receivers over a broadcast channel. In this paper, we propose a new key-tree structure based on Rabin cryptosystem, and an access control scheme using the structure. We show the security of the access control scheme and construct a new broadcast encryption scheme based on it. The proposed broadcast encryption scheme is a modification of the complete subtree method and it reduces the number of keys a receiver stores to one. There have been proposed some modifications of the complete subtree method which minimize the number of keys for a receiver to one, and the most efficient one among them with respect to the computational overhead at receivers is based on RSA cryptosystem. The computational overhead at receivers in our scheme is around log2e times smaller than the most efficient previously proposed one, where e is a public exponent of RSA, and the proposed scheme is the most efficient among tree based one-key schemes. This property is examined by experimental results. Our scheme achieves this reduction in the computational overhead in exchange for an increase in the size of nonsecret memory by [log n * few (e.g. eight)] bits, where n is the total number of receivers.
Xiangyong ZENG Lei HU Wenfeng JIANG
In this paper, a new family S(r) of 2n binary sequences of period 2n-1 is proposed, where n ≡ 2 mod 4 and gcd(r, 2n/2-1)=1. The presented family takes 4-valued out-of-phase auto- and cross-correlation values -1,
This paper deals with a secret key agreement problem from correlated random numbers. It is proved that there is a pair of linear matrices that yields a secret key agreement in the situation wherein a sender, a legitimate receiver, and an eavesdropper have access to correlated random numbers. A relation between the coding problem of correlated sources and a secret key agreement problem from correlated random numbers are also discussed.
Shigeaki KUZUOKA Tomohiko UYEMATSU
This paper investigates some relations among four complexities of sequence over countably infinite alphabet, and shows that two kinds of empirical entropies and the self-entropy rate regarding a Markov source are asymptotically equal and lower bounded by the maximum number of phrases in distinct parsing of the sequence. Some connections with source coding theorems are also investigated.
In this paper we propose a chip-level receiver for optical frequency hopping code-division multiple-access (FH-OCDMA) systems. The proposed chip-level receiver for FH-OCDMA consists of an arrayed waveguide grating (AWG), and photo-detector (PD) for each mark chip, and uses the principles of the chip-level receiver. We analyze the error rate performance of the FH-OCDMA system with the proposed chip-level receiver with treating APD noise, thermal noise, and multi-user interference (MUI) using a Gaussian approximation. We compare the performance of the proposed chip-level receiver to that of the conventional correlation receiver. We show that the proposed chip-level receiver has a better bit error probability and can accommodate more users than the conventional correlation receiver.
Noriaki MIYAZAKI Toshinori SUZUKI Shuichi MATSUMOTO
In order to improve the forward link capacity of cdma2000 HRPD (High Rate Packet Data) or CDMA2000 1xEV-DO, it is significant to overcome multi-path interference. This paper focuses on FDE (Frequency Domain Equalization) with MMSE (Minimum Mean Square Error) criterion. On top of that, backward compatibility with HRPD should be maintained, in other words common channels such as the pilot channel should not be changed. Thus, the PN (Pseudo Noise) spread pilot block without CP (Cyclic Prefix) signals has to be dealt with for FDE. However, this will cause the conventional channel estimation accuracy to deteriorate. In order to improve the estimation accuracy of the conventional method, this paper presents a MRC (Maximal Ratio Combining) spectrum estimator, IPI (Inter-Path Interference) canceller, and path searcher. The results obtained from computer simulations reveal that the proposed method can improve the PER (Packet Error Rate) performance significantly. If compared with Rake combiner and TDE (Time Domain Equalization) with NLMS (Normalized Least Mean Square) scheme, the maximum data rates at a fixed PER of 1% can be increased by 5 to 8 times and 1.25 to 2.67 times, respectively.
Chang Wook AHN Rudrapatna S. RAMAKRISHNA
This paper deals with questions concerning the supply of building-blocks (BBs) in the initial population of real-coded genetic algorithms (rGAs). Drawing upon the methodology of existing BB supply studies for finite alphabets, facetwise models for the supply of a single schema as well as for the supply of all the schemata in a partition are proposed. A model for the initial population size necessary to ensure the presence of all the raw BBs with a given supply error has also been developed using the partition success model. Experimental results show the effectiveness of the facetwise models and the initial population sizing model. Finally, an adaptation approach is suggested for practical use of the BB supply.
Aloys MVUMA Shotaro NISHIMURA Takao HINAMOTO
In this letter we present steady-state analyses of a gradient algorithm (GA) for second-order adaptive infinite impulse response (IIR) notch filters. A method for deriving more accurate estimation mean square error (MSE) expressions than the recently proposed method is presented. The method is based on the estimation error power spectral density (PSD). Moreover, an expression for the estimation bias for the adaptive IIR notch filter with constrained poles and zeros is shown to be obtained from the estimation MSE expression. Simulations are presented to confirm the validity of the analyses.
Yunho LEE Seungjoo KIM Dongho WON
In 2005, Yong and Lee proposed a buyer-seller fingerprinting protocol using symmetric and commutative encryptions. They claimed that their protocol was practical and anonymous since they used symmetric and commutative encryptions. However, an attacker can get the content embedded with one or more honest buyers' fingerprints using man-in-the-middle attack. In this letter, we point out the weakness and propose methods for improving to their protocol.
This paper studies bit-interleaved coded modulation with iterative decoding (BICM-ID) systems that employ multi-dimensional mappings of M-ary constellations to improve the error performance over Rayleigh fading channels. Based on the analytical evaluations of the asymptotic bit error probability (BEP), the distance criteria for the mapping designs can be obtained. A binary switching algorithm (BSA) is then applied to find the optimal mappings with respect to the asymptotic performance. Simulation and analytical results show that the use of multi-dimensional mappings of M-ary constellations can significantly improve the error performance.
Keita KAWAMURA Toshiyuki TANAKA
GPS (Global Positioning System) is 3D positioning system which uses satellite signals, and it is used in various situations. The number of GPS satellites that we can see changes in measurement and the degree of error is increased between measurement points. Our aim is to reduce the degree of error through the experiment and simulation and, as a result, we have succeeded in reducing error in most of the examples.